Metamath Proof Explorer


Theorem mul2neg

Description: Product of two negatives. Theorem I.12 of Apostol p. 18. (Contributed by NM, 30-Jul-2004) (Proof shortened by Andrew Salmon, 19-Nov-2011)

Ref Expression
Assertion mul2neg
|- ( ( A e. CC /\ B e. CC ) -> ( -u A x. -u B ) = ( A x. B ) )

Proof

Step Hyp Ref Expression
1 negcl
 |-  ( B e. CC -> -u B e. CC )
2 mulneg12
 |-  ( ( A e. CC /\ -u B e. CC ) -> ( -u A x. -u B ) = ( A x. -u -u B ) )
3 1 2 sylan2
 |-  ( ( A e. CC /\ B e. CC ) -> ( -u A x. -u B ) = ( A x. -u -u B ) )
4 negneg
 |-  ( B e. CC -> -u -u B = B )
5 4 adantl
 |-  ( ( A e. CC /\ B e. CC ) -> -u -u B = B )
6 5 oveq2d
 |-  ( ( A e. CC /\ B e. CC ) -> ( A x. -u -u B ) = ( A x. B ) )
7 3 6 eqtrd
 |-  ( ( A e. CC /\ B e. CC ) -> ( -u A x. -u B ) = ( A x. B ) )