Step |
Hyp |
Ref |
Expression |
1 |
|
mulnegs1d.1 |
|- ( ph -> A e. No ) |
2 |
|
mulnegs1d.2 |
|- ( ph -> B e. No ) |
3 |
2
|
negscld |
|- ( ph -> ( -us ` B ) e. No ) |
4 |
1 3
|
mulnegs1d |
|- ( ph -> ( ( -us ` A ) x.s ( -us ` B ) ) = ( -us ` ( A x.s ( -us ` B ) ) ) ) |
5 |
1 2
|
mulnegs2d |
|- ( ph -> ( A x.s ( -us ` B ) ) = ( -us ` ( A x.s B ) ) ) |
6 |
5
|
fveq2d |
|- ( ph -> ( -us ` ( A x.s ( -us ` B ) ) ) = ( -us ` ( -us ` ( A x.s B ) ) ) ) |
7 |
1 2
|
mulscld |
|- ( ph -> ( A x.s B ) e. No ) |
8 |
|
negnegs |
|- ( ( A x.s B ) e. No -> ( -us ` ( -us ` ( A x.s B ) ) ) = ( A x.s B ) ) |
9 |
7 8
|
syl |
|- ( ph -> ( -us ` ( -us ` ( A x.s B ) ) ) = ( A x.s B ) ) |
10 |
4 6 9
|
3eqtrd |
|- ( ph -> ( ( -us ` A ) x.s ( -us ` B ) ) = ( A x.s B ) ) |