Metamath Proof Explorer


Theorem mul2negsd

Description: Surreal product of two negatives. (Contributed by Scott Fenton, 15-Mar-2025)

Ref Expression
Hypotheses mulnegs1d.1
|- ( ph -> A e. No )
mulnegs1d.2
|- ( ph -> B e. No )
Assertion mul2negsd
|- ( ph -> ( ( -us ` A ) x.s ( -us ` B ) ) = ( A x.s B ) )

Proof

Step Hyp Ref Expression
1 mulnegs1d.1
 |-  ( ph -> A e. No )
2 mulnegs1d.2
 |-  ( ph -> B e. No )
3 2 negscld
 |-  ( ph -> ( -us ` B ) e. No )
4 1 3 mulnegs1d
 |-  ( ph -> ( ( -us ` A ) x.s ( -us ` B ) ) = ( -us ` ( A x.s ( -us ` B ) ) ) )
5 1 2 mulnegs2d
 |-  ( ph -> ( A x.s ( -us ` B ) ) = ( -us ` ( A x.s B ) ) )
6 5 fveq2d
 |-  ( ph -> ( -us ` ( A x.s ( -us ` B ) ) ) = ( -us ` ( -us ` ( A x.s B ) ) ) )
7 1 2 mulscld
 |-  ( ph -> ( A x.s B ) e. No )
8 negnegs
 |-  ( ( A x.s B ) e. No -> ( -us ` ( -us ` ( A x.s B ) ) ) = ( A x.s B ) )
9 7 8 syl
 |-  ( ph -> ( -us ` ( -us ` ( A x.s B ) ) ) = ( A x.s B ) )
10 4 6 9 3eqtrd
 |-  ( ph -> ( ( -us ` A ) x.s ( -us ` B ) ) = ( A x.s B ) )