| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulcom |
|- ( ( B e. CC /\ C e. CC ) -> ( B x. C ) = ( C x. B ) ) |
| 2 |
1
|
oveq2d |
|- ( ( B e. CC /\ C e. CC ) -> ( A x. ( B x. C ) ) = ( A x. ( C x. B ) ) ) |
| 3 |
2
|
3adant1 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A x. ( B x. C ) ) = ( A x. ( C x. B ) ) ) |
| 4 |
|
mulass |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. B ) x. C ) = ( A x. ( B x. C ) ) ) |
| 5 |
|
mulcl |
|- ( ( C e. CC /\ B e. CC ) -> ( C x. B ) e. CC ) |
| 6 |
5
|
ancoms |
|- ( ( B e. CC /\ C e. CC ) -> ( C x. B ) e. CC ) |
| 7 |
6
|
3adant1 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( C x. B ) e. CC ) |
| 8 |
|
simp1 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> A e. CC ) |
| 9 |
7 8
|
mulcomd |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( C x. B ) x. A ) = ( A x. ( C x. B ) ) ) |
| 10 |
3 4 9
|
3eqtr4d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. B ) x. C ) = ( ( C x. B ) x. A ) ) |