Description: Commutative/associative law that swaps the last two factors in a triple product. (Contributed by NM, 11-May-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mul.1 | |- A e. CC |
|
mul.2 | |- B e. CC |
||
mul.3 | |- C e. CC |
||
Assertion | mul32i | |- ( ( A x. B ) x. C ) = ( ( A x. C ) x. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 | |- A e. CC |
|
2 | mul.2 | |- B e. CC |
|
3 | mul.3 | |- C e. CC |
|
4 | mul32 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. B ) x. C ) = ( ( A x. C ) x. B ) ) |
|
5 | 1 2 3 4 | mp3an | |- ( ( A x. B ) x. C ) = ( ( A x. C ) x. B ) |