Step |
Hyp |
Ref |
Expression |
1 |
|
mul32 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. B ) x. C ) = ( ( A x. C ) x. B ) ) |
2 |
1
|
oveq1d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A x. B ) x. C ) x. D ) = ( ( ( A x. C ) x. B ) x. D ) ) |
3 |
2
|
3expa |
|- ( ( ( A e. CC /\ B e. CC ) /\ C e. CC ) -> ( ( ( A x. B ) x. C ) x. D ) = ( ( ( A x. C ) x. B ) x. D ) ) |
4 |
3
|
adantrr |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A x. B ) x. C ) x. D ) = ( ( ( A x. C ) x. B ) x. D ) ) |
5 |
|
mulcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) e. CC ) |
6 |
|
mulass |
|- ( ( ( A x. B ) e. CC /\ C e. CC /\ D e. CC ) -> ( ( ( A x. B ) x. C ) x. D ) = ( ( A x. B ) x. ( C x. D ) ) ) |
7 |
6
|
3expb |
|- ( ( ( A x. B ) e. CC /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A x. B ) x. C ) x. D ) = ( ( A x. B ) x. ( C x. D ) ) ) |
8 |
5 7
|
sylan |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A x. B ) x. C ) x. D ) = ( ( A x. B ) x. ( C x. D ) ) ) |
9 |
|
mulcl |
|- ( ( A e. CC /\ C e. CC ) -> ( A x. C ) e. CC ) |
10 |
|
mulass |
|- ( ( ( A x. C ) e. CC /\ B e. CC /\ D e. CC ) -> ( ( ( A x. C ) x. B ) x. D ) = ( ( A x. C ) x. ( B x. D ) ) ) |
11 |
10
|
3expb |
|- ( ( ( A x. C ) e. CC /\ ( B e. CC /\ D e. CC ) ) -> ( ( ( A x. C ) x. B ) x. D ) = ( ( A x. C ) x. ( B x. D ) ) ) |
12 |
9 11
|
sylan |
|- ( ( ( A e. CC /\ C e. CC ) /\ ( B e. CC /\ D e. CC ) ) -> ( ( ( A x. C ) x. B ) x. D ) = ( ( A x. C ) x. ( B x. D ) ) ) |
13 |
12
|
an4s |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A x. C ) x. B ) x. D ) = ( ( A x. C ) x. ( B x. D ) ) ) |
14 |
4 8 13
|
3eqtr3d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. B ) x. ( C x. D ) ) = ( ( A x. C ) x. ( B x. D ) ) ) |