Metamath Proof Explorer


Theorem mul4i

Description: Rearrangement of 4 factors. (Contributed by NM, 16-Feb-1995)

Ref Expression
Hypotheses mul.1
|- A e. CC
mul.2
|- B e. CC
mul.3
|- C e. CC
mul4.4
|- D e. CC
Assertion mul4i
|- ( ( A x. B ) x. ( C x. D ) ) = ( ( A x. C ) x. ( B x. D ) )

Proof

Step Hyp Ref Expression
1 mul.1
 |-  A e. CC
2 mul.2
 |-  B e. CC
3 mul.3
 |-  C e. CC
4 mul4.4
 |-  D e. CC
5 mul4
 |-  ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. B ) x. ( C x. D ) ) = ( ( A x. C ) x. ( B x. D ) ) )
6 1 2 3 4 5 mp4an
 |-  ( ( A x. B ) x. ( C x. D ) ) = ( ( A x. C ) x. ( B x. D ) )