| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulcom |
|- ( ( C e. CC /\ D e. CC ) -> ( C x. D ) = ( D x. C ) ) |
| 2 |
1
|
adantl |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( C x. D ) = ( D x. C ) ) |
| 3 |
2
|
oveq2d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. B ) x. ( C x. D ) ) = ( ( A x. B ) x. ( D x. C ) ) ) |
| 4 |
|
mul4 |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( D e. CC /\ C e. CC ) ) -> ( ( A x. B ) x. ( D x. C ) ) = ( ( A x. D ) x. ( B x. C ) ) ) |
| 5 |
4
|
ancom2s |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. B ) x. ( D x. C ) ) = ( ( A x. D ) x. ( B x. C ) ) ) |
| 6 |
|
simplr |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> B e. CC ) |
| 7 |
|
simprl |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> C e. CC ) |
| 8 |
6 7
|
mulcomd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( B x. C ) = ( C x. B ) ) |
| 9 |
8
|
oveq2d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. D ) x. ( B x. C ) ) = ( ( A x. D ) x. ( C x. B ) ) ) |
| 10 |
3 5 9
|
3eqtrd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. B ) x. ( C x. D ) ) = ( ( A x. D ) x. ( C x. B ) ) ) |