| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-1cn |
|- 1 e. CC |
| 2 |
|
addcl |
|- ( ( 1 e. CC /\ A e. CC ) -> ( 1 + A ) e. CC ) |
| 3 |
1 2
|
mpan |
|- ( A e. CC -> ( 1 + A ) e. CC ) |
| 4 |
|
adddi |
|- ( ( ( 1 + A ) e. CC /\ 1 e. CC /\ B e. CC ) -> ( ( 1 + A ) x. ( 1 + B ) ) = ( ( ( 1 + A ) x. 1 ) + ( ( 1 + A ) x. B ) ) ) |
| 5 |
1 4
|
mp3an2 |
|- ( ( ( 1 + A ) e. CC /\ B e. CC ) -> ( ( 1 + A ) x. ( 1 + B ) ) = ( ( ( 1 + A ) x. 1 ) + ( ( 1 + A ) x. B ) ) ) |
| 6 |
3 5
|
sylan |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 1 + A ) x. ( 1 + B ) ) = ( ( ( 1 + A ) x. 1 ) + ( ( 1 + A ) x. B ) ) ) |
| 7 |
3
|
mulridd |
|- ( A e. CC -> ( ( 1 + A ) x. 1 ) = ( 1 + A ) ) |
| 8 |
7
|
adantr |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 1 + A ) x. 1 ) = ( 1 + A ) ) |
| 9 |
|
adddir |
|- ( ( 1 e. CC /\ A e. CC /\ B e. CC ) -> ( ( 1 + A ) x. B ) = ( ( 1 x. B ) + ( A x. B ) ) ) |
| 10 |
1 9
|
mp3an1 |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 1 + A ) x. B ) = ( ( 1 x. B ) + ( A x. B ) ) ) |
| 11 |
|
mullid |
|- ( B e. CC -> ( 1 x. B ) = B ) |
| 12 |
11
|
adantl |
|- ( ( A e. CC /\ B e. CC ) -> ( 1 x. B ) = B ) |
| 13 |
12
|
oveq1d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 1 x. B ) + ( A x. B ) ) = ( B + ( A x. B ) ) ) |
| 14 |
10 13
|
eqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 1 + A ) x. B ) = ( B + ( A x. B ) ) ) |
| 15 |
8 14
|
oveq12d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( 1 + A ) x. 1 ) + ( ( 1 + A ) x. B ) ) = ( ( 1 + A ) + ( B + ( A x. B ) ) ) ) |
| 16 |
6 15
|
eqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 1 + A ) x. ( 1 + B ) ) = ( ( 1 + A ) + ( B + ( A x. B ) ) ) ) |