| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( A e. CC /\ B e. CC ) -> A e. CC ) |
| 2 |
|
1cnd |
|- ( ( A e. CC /\ B e. CC ) -> 1 e. CC ) |
| 3 |
1 2
|
addcomd |
|- ( ( A e. CC /\ B e. CC ) -> ( A + 1 ) = ( 1 + A ) ) |
| 4 |
|
simpr |
|- ( ( A e. CC /\ B e. CC ) -> B e. CC ) |
| 5 |
4 2
|
addcomd |
|- ( ( A e. CC /\ B e. CC ) -> ( B + 1 ) = ( 1 + B ) ) |
| 6 |
3 5
|
oveq12d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + 1 ) x. ( B + 1 ) ) = ( ( 1 + A ) x. ( 1 + B ) ) ) |
| 7 |
|
muladd11 |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 1 + A ) x. ( 1 + B ) ) = ( ( 1 + A ) + ( B + ( A x. B ) ) ) ) |
| 8 |
|
mulcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) e. CC ) |
| 9 |
4 8
|
addcld |
|- ( ( A e. CC /\ B e. CC ) -> ( B + ( A x. B ) ) e. CC ) |
| 10 |
2 1 9
|
addassd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 1 + A ) + ( B + ( A x. B ) ) ) = ( 1 + ( A + ( B + ( A x. B ) ) ) ) ) |
| 11 |
1 9
|
addcld |
|- ( ( A e. CC /\ B e. CC ) -> ( A + ( B + ( A x. B ) ) ) e. CC ) |
| 12 |
2 11
|
addcomd |
|- ( ( A e. CC /\ B e. CC ) -> ( 1 + ( A + ( B + ( A x. B ) ) ) ) = ( ( A + ( B + ( A x. B ) ) ) + 1 ) ) |
| 13 |
1 4 8
|
addassd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) + ( A x. B ) ) = ( A + ( B + ( A x. B ) ) ) ) |
| 14 |
|
addcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) |
| 15 |
14 8
|
addcomd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) + ( A x. B ) ) = ( ( A x. B ) + ( A + B ) ) ) |
| 16 |
13 15
|
eqtr3d |
|- ( ( A e. CC /\ B e. CC ) -> ( A + ( B + ( A x. B ) ) ) = ( ( A x. B ) + ( A + B ) ) ) |
| 17 |
16
|
oveq1d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + ( B + ( A x. B ) ) ) + 1 ) = ( ( ( A x. B ) + ( A + B ) ) + 1 ) ) |
| 18 |
10 12 17
|
3eqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 1 + A ) + ( B + ( A x. B ) ) ) = ( ( ( A x. B ) + ( A + B ) ) + 1 ) ) |
| 19 |
6 7 18
|
3eqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + 1 ) x. ( B + 1 ) ) = ( ( ( A x. B ) + ( A + B ) ) + 1 ) ) |