Metamath Proof Explorer


Theorem muladdi

Description: Product of two sums. (Contributed by NM, 17-May-1999)

Ref Expression
Hypotheses mulm1.1
|- A e. CC
mulneg.2
|- B e. CC
subdi.3
|- C e. CC
muladdi.4
|- D e. CC
Assertion muladdi
|- ( ( A + B ) x. ( C + D ) ) = ( ( ( A x. C ) + ( D x. B ) ) + ( ( A x. D ) + ( C x. B ) ) )

Proof

Step Hyp Ref Expression
1 mulm1.1
 |-  A e. CC
2 mulneg.2
 |-  B e. CC
3 subdi.3
 |-  C e. CC
4 muladdi.4
 |-  D e. CC
5 muladd
 |-  ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) x. ( C + D ) ) = ( ( ( A x. C ) + ( D x. B ) ) + ( ( A x. D ) + ( C x. B ) ) ) )
6 1 2 3 4 5 mp4an
 |-  ( ( A + B ) x. ( C + D ) ) = ( ( ( A x. C ) + ( D x. B ) ) + ( ( A x. D ) + ( C x. B ) ) )