Description: Product of two sums. (Contributed by NM, 17-May-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulm1.1 | |- A e. CC |
|
| mulneg.2 | |- B e. CC |
||
| subdi.3 | |- C e. CC |
||
| muladdi.4 | |- D e. CC |
||
| Assertion | muladdi | |- ( ( A + B ) x. ( C + D ) ) = ( ( ( A x. C ) + ( D x. B ) ) + ( ( A x. D ) + ( C x. B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulm1.1 | |- A e. CC |
|
| 2 | mulneg.2 | |- B e. CC |
|
| 3 | subdi.3 | |- C e. CC |
|
| 4 | muladdi.4 | |- D e. CC |
|
| 5 | muladd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) x. ( C + D ) ) = ( ( ( A x. C ) + ( D x. B ) ) + ( ( A x. D ) + ( C x. B ) ) ) ) |
|
| 6 | 1 2 3 4 5 | mp4an | |- ( ( A + B ) x. ( C + D ) ) = ( ( ( A x. C ) + ( D x. B ) ) + ( ( A x. D ) + ( C x. B ) ) ) |