Description: Product of two sums. (Contributed by NM, 17-May-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mulm1.1 | |- A e. CC |
|
mulneg.2 | |- B e. CC |
||
subdi.3 | |- C e. CC |
||
muladdi.4 | |- D e. CC |
||
Assertion | muladdi | |- ( ( A + B ) x. ( C + D ) ) = ( ( ( A x. C ) + ( D x. B ) ) + ( ( A x. D ) + ( C x. B ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulm1.1 | |- A e. CC |
|
2 | mulneg.2 | |- B e. CC |
|
3 | subdi.3 | |- C e. CC |
|
4 | muladdi.4 | |- D e. CC |
|
5 | muladd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) x. ( C + D ) ) = ( ( ( A x. C ) + ( D x. B ) ) + ( ( A x. D ) + ( C x. B ) ) ) ) |
|
6 | 1 2 3 4 5 | mp4an | |- ( ( A + B ) x. ( C + D ) ) = ( ( ( A x. C ) + ( D x. B ) ) + ( ( A x. D ) + ( C x. B ) ) ) |