| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zre |  |-  ( N e. ZZ -> N e. RR ) | 
						
							| 2 | 1 | 3ad2ant3 |  |-  ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> N e. RR ) | 
						
							| 3 |  | rpre |  |-  ( M e. RR+ -> M e. RR ) | 
						
							| 4 | 3 | 3ad2ant2 |  |-  ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> M e. RR ) | 
						
							| 5 | 2 4 | remulcld |  |-  ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> ( N x. M ) e. RR ) | 
						
							| 6 |  | simp1 |  |-  ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> A e. RR ) | 
						
							| 7 |  | simp2 |  |-  ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> M e. RR+ ) | 
						
							| 8 |  | modaddmod |  |-  ( ( ( N x. M ) e. RR /\ A e. RR /\ M e. RR+ ) -> ( ( ( ( N x. M ) mod M ) + A ) mod M ) = ( ( ( N x. M ) + A ) mod M ) ) | 
						
							| 9 | 5 6 7 8 | syl3anc |  |-  ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> ( ( ( ( N x. M ) mod M ) + A ) mod M ) = ( ( ( N x. M ) + A ) mod M ) ) | 
						
							| 10 |  | pm3.22 |  |-  ( ( M e. RR+ /\ N e. ZZ ) -> ( N e. ZZ /\ M e. RR+ ) ) | 
						
							| 11 | 10 | 3adant1 |  |-  ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> ( N e. ZZ /\ M e. RR+ ) ) | 
						
							| 12 |  | mulmod0 |  |-  ( ( N e. ZZ /\ M e. RR+ ) -> ( ( N x. M ) mod M ) = 0 ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> ( ( N x. M ) mod M ) = 0 ) | 
						
							| 14 | 13 | oveq1d |  |-  ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> ( ( ( N x. M ) mod M ) + A ) = ( 0 + A ) ) | 
						
							| 15 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 16 | 15 | addlidd |  |-  ( A e. RR -> ( 0 + A ) = A ) | 
						
							| 17 | 16 | 3ad2ant1 |  |-  ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> ( 0 + A ) = A ) | 
						
							| 18 | 14 17 | eqtrd |  |-  ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> ( ( ( N x. M ) mod M ) + A ) = A ) | 
						
							| 19 | 18 | oveq1d |  |-  ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> ( ( ( ( N x. M ) mod M ) + A ) mod M ) = ( A mod M ) ) | 
						
							| 20 | 9 19 | eqtr3d |  |-  ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> ( ( ( N x. M ) + A ) mod M ) = ( A mod M ) ) |