Metamath Proof Explorer


Theorem mulassi

Description: Associative law for multiplication. (Contributed by NM, 23-Nov-1994)

Ref Expression
Hypotheses axi.1
|- A e. CC
axi.2
|- B e. CC
axi.3
|- C e. CC
Assertion mulassi
|- ( ( A x. B ) x. C ) = ( A x. ( B x. C ) )

Proof

Step Hyp Ref Expression
1 axi.1
 |-  A e. CC
2 axi.2
 |-  B e. CC
3 axi.3
 |-  C e. CC
4 mulass
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. B ) x. C ) = ( A x. ( B x. C ) ) )
5 1 2 3 4 mp3an
 |-  ( ( A x. B ) x. C ) = ( A x. ( B x. C ) )