Step |
Hyp |
Ref |
Expression |
1 |
|
mulcl |
|- ( ( C e. CC /\ A e. CC ) -> ( C x. A ) e. CC ) |
2 |
1
|
ancoms |
|- ( ( A e. CC /\ C e. CC ) -> ( C x. A ) e. CC ) |
3 |
2
|
3adant2 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( C x. A ) e. CC ) |
4 |
|
simp2 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> B e. CC ) |
5 |
|
binom2 |
|- ( ( ( C x. A ) e. CC /\ B e. CC ) -> ( ( ( C x. A ) + B ) ^ 2 ) = ( ( ( ( C x. A ) ^ 2 ) + ( 2 x. ( ( C x. A ) x. B ) ) ) + ( B ^ 2 ) ) ) |
6 |
3 4 5
|
syl2anc |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( C x. A ) + B ) ^ 2 ) = ( ( ( ( C x. A ) ^ 2 ) + ( 2 x. ( ( C x. A ) x. B ) ) ) + ( B ^ 2 ) ) ) |
7 |
|
mulass |
|- ( ( C e. CC /\ A e. CC /\ B e. CC ) -> ( ( C x. A ) x. B ) = ( C x. ( A x. B ) ) ) |
8 |
7
|
3coml |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( C x. A ) x. B ) = ( C x. ( A x. B ) ) ) |
9 |
8
|
oveq2d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( 2 x. ( ( C x. A ) x. B ) ) = ( 2 x. ( C x. ( A x. B ) ) ) ) |
10 |
|
2cnd |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> 2 e. CC ) |
11 |
|
simp3 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> C e. CC ) |
12 |
|
mulcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) e. CC ) |
13 |
12
|
3adant3 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A x. B ) e. CC ) |
14 |
10 11 13
|
mulassd |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( 2 x. C ) x. ( A x. B ) ) = ( 2 x. ( C x. ( A x. B ) ) ) ) |
15 |
9 14
|
eqtr4d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( 2 x. ( ( C x. A ) x. B ) ) = ( ( 2 x. C ) x. ( A x. B ) ) ) |
16 |
15
|
oveq2d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( C x. A ) ^ 2 ) + ( 2 x. ( ( C x. A ) x. B ) ) ) = ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) ) |
17 |
16
|
oveq1d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( ( C x. A ) ^ 2 ) + ( 2 x. ( ( C x. A ) x. B ) ) ) + ( B ^ 2 ) ) = ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) ) |
18 |
6 17
|
eqtrd |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( C x. A ) + B ) ^ 2 ) = ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) ) |