| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulc1cncfg.1 |  |-  F/_ x F | 
						
							| 2 |  | mulc1cncfg.2 |  |-  F/ x ph | 
						
							| 3 |  | mulc1cncfg.3 |  |-  ( ph -> F e. ( A -cn-> CC ) ) | 
						
							| 4 |  | mulc1cncfg.4 |  |-  ( ph -> B e. CC ) | 
						
							| 5 |  | eqid |  |-  ( x e. CC |-> ( B x. x ) ) = ( x e. CC |-> ( B x. x ) ) | 
						
							| 6 | 5 | mulc1cncf |  |-  ( B e. CC -> ( x e. CC |-> ( B x. x ) ) e. ( CC -cn-> CC ) ) | 
						
							| 7 | 4 6 | syl |  |-  ( ph -> ( x e. CC |-> ( B x. x ) ) e. ( CC -cn-> CC ) ) | 
						
							| 8 |  | cncff |  |-  ( ( x e. CC |-> ( B x. x ) ) e. ( CC -cn-> CC ) -> ( x e. CC |-> ( B x. x ) ) : CC --> CC ) | 
						
							| 9 | 7 8 | syl |  |-  ( ph -> ( x e. CC |-> ( B x. x ) ) : CC --> CC ) | 
						
							| 10 |  | cncff |  |-  ( F e. ( A -cn-> CC ) -> F : A --> CC ) | 
						
							| 11 | 3 10 | syl |  |-  ( ph -> F : A --> CC ) | 
						
							| 12 |  | fcompt |  |-  ( ( ( x e. CC |-> ( B x. x ) ) : CC --> CC /\ F : A --> CC ) -> ( ( x e. CC |-> ( B x. x ) ) o. F ) = ( t e. A |-> ( ( x e. CC |-> ( B x. x ) ) ` ( F ` t ) ) ) ) | 
						
							| 13 | 9 11 12 | syl2anc |  |-  ( ph -> ( ( x e. CC |-> ( B x. x ) ) o. F ) = ( t e. A |-> ( ( x e. CC |-> ( B x. x ) ) ` ( F ` t ) ) ) ) | 
						
							| 14 | 11 | ffvelcdmda |  |-  ( ( ph /\ t e. A ) -> ( F ` t ) e. CC ) | 
						
							| 15 | 4 | adantr |  |-  ( ( ph /\ t e. A ) -> B e. CC ) | 
						
							| 16 | 15 14 | mulcld |  |-  ( ( ph /\ t e. A ) -> ( B x. ( F ` t ) ) e. CC ) | 
						
							| 17 |  | nfcv |  |-  F/_ x t | 
						
							| 18 | 1 17 | nffv |  |-  F/_ x ( F ` t ) | 
						
							| 19 |  | nfcv |  |-  F/_ x B | 
						
							| 20 |  | nfcv |  |-  F/_ x x. | 
						
							| 21 | 19 20 18 | nfov |  |-  F/_ x ( B x. ( F ` t ) ) | 
						
							| 22 |  | oveq2 |  |-  ( x = ( F ` t ) -> ( B x. x ) = ( B x. ( F ` t ) ) ) | 
						
							| 23 | 18 21 22 5 | fvmptf |  |-  ( ( ( F ` t ) e. CC /\ ( B x. ( F ` t ) ) e. CC ) -> ( ( x e. CC |-> ( B x. x ) ) ` ( F ` t ) ) = ( B x. ( F ` t ) ) ) | 
						
							| 24 | 14 16 23 | syl2anc |  |-  ( ( ph /\ t e. A ) -> ( ( x e. CC |-> ( B x. x ) ) ` ( F ` t ) ) = ( B x. ( F ` t ) ) ) | 
						
							| 25 | 24 | mpteq2dva |  |-  ( ph -> ( t e. A |-> ( ( x e. CC |-> ( B x. x ) ) ` ( F ` t ) ) ) = ( t e. A |-> ( B x. ( F ` t ) ) ) ) | 
						
							| 26 |  | nfcv |  |-  F/_ t B | 
						
							| 27 |  | nfcv |  |-  F/_ t x. | 
						
							| 28 |  | nfcv |  |-  F/_ t ( F ` x ) | 
						
							| 29 | 26 27 28 | nfov |  |-  F/_ t ( B x. ( F ` x ) ) | 
						
							| 30 |  | fveq2 |  |-  ( t = x -> ( F ` t ) = ( F ` x ) ) | 
						
							| 31 | 30 | oveq2d |  |-  ( t = x -> ( B x. ( F ` t ) ) = ( B x. ( F ` x ) ) ) | 
						
							| 32 | 21 29 31 | cbvmpt |  |-  ( t e. A |-> ( B x. ( F ` t ) ) ) = ( x e. A |-> ( B x. ( F ` x ) ) ) | 
						
							| 33 | 25 32 | eqtrdi |  |-  ( ph -> ( t e. A |-> ( ( x e. CC |-> ( B x. x ) ) ` ( F ` t ) ) ) = ( x e. A |-> ( B x. ( F ` x ) ) ) ) | 
						
							| 34 | 13 33 | eqtrd |  |-  ( ph -> ( ( x e. CC |-> ( B x. x ) ) o. F ) = ( x e. A |-> ( B x. ( F ` x ) ) ) ) | 
						
							| 35 | 3 7 | cncfco |  |-  ( ph -> ( ( x e. CC |-> ( B x. x ) ) o. F ) e. ( A -cn-> CC ) ) | 
						
							| 36 | 34 35 | eqeltrrd |  |-  ( ph -> ( x e. A |-> ( B x. ( F ` x ) ) ) e. ( A -cn-> CC ) ) |