Metamath Proof Explorer


Theorem mulcan

Description: Cancellation law for multiplication (full theorem form). Theorem I.7 of Apostol p. 18. (Contributed by NM, 29-Jan-1995) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion mulcan
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. A ) = ( C x. B ) <-> A = B ) )

Proof

Step Hyp Ref Expression
1 simp1
 |-  ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> A e. CC )
2 simp2
 |-  ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> B e. CC )
3 simp3l
 |-  ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> C e. CC )
4 simp3r
 |-  ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> C =/= 0 )
5 1 2 3 4 mulcand
 |-  ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. A ) = ( C x. B ) <-> A = B ) )