Description: Cancellation of a nonzero factor on the right in an equation. One-way deduction form of mulcan2d . (Contributed by David Moews, 28-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulcanad.1 | |- ( ph -> A e. CC ) | |
| mulcanad.2 | |- ( ph -> B e. CC ) | ||
| mulcanad.3 | |- ( ph -> C e. CC ) | ||
| mulcanad.4 | |- ( ph -> C =/= 0 ) | ||
| mulcan2ad.5 | |- ( ph -> ( A x. C ) = ( B x. C ) ) | ||
| Assertion | mulcan2ad | |- ( ph -> A = B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mulcanad.1 | |- ( ph -> A e. CC ) | |
| 2 | mulcanad.2 | |- ( ph -> B e. CC ) | |
| 3 | mulcanad.3 | |- ( ph -> C e. CC ) | |
| 4 | mulcanad.4 | |- ( ph -> C =/= 0 ) | |
| 5 | mulcan2ad.5 | |- ( ph -> ( A x. C ) = ( B x. C ) ) | |
| 6 | 1 2 3 4 | mulcan2d | |- ( ph -> ( ( A x. C ) = ( B x. C ) <-> A = B ) ) | 
| 7 | 5 6 | mpbid | |- ( ph -> A = B ) |