| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulcom |  |-  ( ( A e. CC /\ C e. CC ) -> ( A x. C ) = ( C x. A ) ) | 
						
							| 2 | 1 | 3adant2 |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A x. C ) = ( C x. A ) ) | 
						
							| 3 |  | mulcom |  |-  ( ( B e. CC /\ C e. CC ) -> ( B x. C ) = ( C x. B ) ) | 
						
							| 4 | 3 | 3adant1 |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( B x. C ) = ( C x. B ) ) | 
						
							| 5 | 2 4 | eqeq12d |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. C ) = ( B x. C ) <-> ( C x. A ) = ( C x. B ) ) ) | 
						
							| 6 |  | mulcan1g |  |-  ( ( C e. CC /\ A e. CC /\ B e. CC ) -> ( ( C x. A ) = ( C x. B ) <-> ( C = 0 \/ A = B ) ) ) | 
						
							| 7 | 6 | 3coml |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( C x. A ) = ( C x. B ) <-> ( C = 0 \/ A = B ) ) ) | 
						
							| 8 |  | orcom |  |-  ( ( C = 0 \/ A = B ) <-> ( A = B \/ C = 0 ) ) | 
						
							| 9 | 7 8 | bitrdi |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( C x. A ) = ( C x. B ) <-> ( A = B \/ C = 0 ) ) ) | 
						
							| 10 | 5 9 | bitrd |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. C ) = ( B x. C ) <-> ( A = B \/ C = 0 ) ) ) |