| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulcand.1 |
|- ( ph -> A e. CC ) |
| 2 |
|
mulcand.2 |
|- ( ph -> B e. CC ) |
| 3 |
|
mulcand.3 |
|- ( ph -> C e. CC ) |
| 4 |
|
mulcand.4 |
|- ( ph -> C =/= 0 ) |
| 5 |
|
recex |
|- ( ( C e. CC /\ C =/= 0 ) -> E. x e. CC ( C x. x ) = 1 ) |
| 6 |
3 4 5
|
syl2anc |
|- ( ph -> E. x e. CC ( C x. x ) = 1 ) |
| 7 |
|
oveq2 |
|- ( ( C x. A ) = ( C x. B ) -> ( x x. ( C x. A ) ) = ( x x. ( C x. B ) ) ) |
| 8 |
|
simprl |
|- ( ( ph /\ ( x e. CC /\ ( C x. x ) = 1 ) ) -> x e. CC ) |
| 9 |
3
|
adantr |
|- ( ( ph /\ ( x e. CC /\ ( C x. x ) = 1 ) ) -> C e. CC ) |
| 10 |
8 9
|
mulcomd |
|- ( ( ph /\ ( x e. CC /\ ( C x. x ) = 1 ) ) -> ( x x. C ) = ( C x. x ) ) |
| 11 |
|
simprr |
|- ( ( ph /\ ( x e. CC /\ ( C x. x ) = 1 ) ) -> ( C x. x ) = 1 ) |
| 12 |
10 11
|
eqtrd |
|- ( ( ph /\ ( x e. CC /\ ( C x. x ) = 1 ) ) -> ( x x. C ) = 1 ) |
| 13 |
12
|
oveq1d |
|- ( ( ph /\ ( x e. CC /\ ( C x. x ) = 1 ) ) -> ( ( x x. C ) x. A ) = ( 1 x. A ) ) |
| 14 |
1
|
adantr |
|- ( ( ph /\ ( x e. CC /\ ( C x. x ) = 1 ) ) -> A e. CC ) |
| 15 |
8 9 14
|
mulassd |
|- ( ( ph /\ ( x e. CC /\ ( C x. x ) = 1 ) ) -> ( ( x x. C ) x. A ) = ( x x. ( C x. A ) ) ) |
| 16 |
14
|
mullidd |
|- ( ( ph /\ ( x e. CC /\ ( C x. x ) = 1 ) ) -> ( 1 x. A ) = A ) |
| 17 |
13 15 16
|
3eqtr3d |
|- ( ( ph /\ ( x e. CC /\ ( C x. x ) = 1 ) ) -> ( x x. ( C x. A ) ) = A ) |
| 18 |
12
|
oveq1d |
|- ( ( ph /\ ( x e. CC /\ ( C x. x ) = 1 ) ) -> ( ( x x. C ) x. B ) = ( 1 x. B ) ) |
| 19 |
2
|
adantr |
|- ( ( ph /\ ( x e. CC /\ ( C x. x ) = 1 ) ) -> B e. CC ) |
| 20 |
8 9 19
|
mulassd |
|- ( ( ph /\ ( x e. CC /\ ( C x. x ) = 1 ) ) -> ( ( x x. C ) x. B ) = ( x x. ( C x. B ) ) ) |
| 21 |
19
|
mullidd |
|- ( ( ph /\ ( x e. CC /\ ( C x. x ) = 1 ) ) -> ( 1 x. B ) = B ) |
| 22 |
18 20 21
|
3eqtr3d |
|- ( ( ph /\ ( x e. CC /\ ( C x. x ) = 1 ) ) -> ( x x. ( C x. B ) ) = B ) |
| 23 |
17 22
|
eqeq12d |
|- ( ( ph /\ ( x e. CC /\ ( C x. x ) = 1 ) ) -> ( ( x x. ( C x. A ) ) = ( x x. ( C x. B ) ) <-> A = B ) ) |
| 24 |
7 23
|
imbitrid |
|- ( ( ph /\ ( x e. CC /\ ( C x. x ) = 1 ) ) -> ( ( C x. A ) = ( C x. B ) -> A = B ) ) |
| 25 |
6 24
|
rexlimddv |
|- ( ph -> ( ( C x. A ) = ( C x. B ) -> A = B ) ) |
| 26 |
|
oveq2 |
|- ( A = B -> ( C x. A ) = ( C x. B ) ) |
| 27 |
25 26
|
impbid1 |
|- ( ph -> ( ( C x. A ) = ( C x. B ) <-> A = B ) ) |