Metamath Proof Explorer


Theorem mulcani

Description: Cancellation law for multiplication. Theorem I.7 of Apostol p. 18. (Contributed by NM, 26-Jan-1995)

Ref Expression
Hypotheses mulcan.1
|- A e. CC
mulcan.2
|- B e. CC
mulcan.3
|- C e. CC
mulcan.4
|- C =/= 0
Assertion mulcani
|- ( ( C x. A ) = ( C x. B ) <-> A = B )

Proof

Step Hyp Ref Expression
1 mulcan.1
 |-  A e. CC
2 mulcan.2
 |-  B e. CC
3 mulcan.3
 |-  C e. CC
4 mulcan.4
 |-  C =/= 0
5 3 4 pm3.2i
 |-  ( C e. CC /\ C =/= 0 )
6 mulcan
 |-  ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. A ) = ( C x. B ) <-> A = B ) )
7 1 2 5 6 mp3an
 |-  ( ( C x. A ) = ( C x. B ) <-> A = B )