| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elprnq |
|- ( ( A e. P. /\ g e. A ) -> g e. Q. ) |
| 2 |
|
elprnq |
|- ( ( B e. P. /\ h e. B ) -> h e. Q. ) |
| 3 |
|
recclnq |
|- ( h e. Q. -> ( *Q ` h ) e. Q. ) |
| 4 |
3
|
adantl |
|- ( ( g e. Q. /\ h e. Q. ) -> ( *Q ` h ) e. Q. ) |
| 5 |
|
vex |
|- x e. _V |
| 6 |
|
ovex |
|- ( g .Q h ) e. _V |
| 7 |
|
ltmnq |
|- ( w e. Q. -> ( y ( w .Q y ) |
| 8 |
|
fvex |
|- ( *Q ` h ) e. _V |
| 9 |
|
mulcomnq |
|- ( y .Q z ) = ( z .Q y ) |
| 10 |
5 6 7 8 9
|
caovord2 |
|- ( ( *Q ` h ) e. Q. -> ( x ( x .Q ( *Q ` h ) ) |
| 11 |
4 10
|
syl |
|- ( ( g e. Q. /\ h e. Q. ) -> ( x ( x .Q ( *Q ` h ) ) |
| 12 |
|
mulassnq |
|- ( ( g .Q h ) .Q ( *Q ` h ) ) = ( g .Q ( h .Q ( *Q ` h ) ) ) |
| 13 |
|
recidnq |
|- ( h e. Q. -> ( h .Q ( *Q ` h ) ) = 1Q ) |
| 14 |
13
|
oveq2d |
|- ( h e. Q. -> ( g .Q ( h .Q ( *Q ` h ) ) ) = ( g .Q 1Q ) ) |
| 15 |
12 14
|
eqtrid |
|- ( h e. Q. -> ( ( g .Q h ) .Q ( *Q ` h ) ) = ( g .Q 1Q ) ) |
| 16 |
|
mulidnq |
|- ( g e. Q. -> ( g .Q 1Q ) = g ) |
| 17 |
15 16
|
sylan9eqr |
|- ( ( g e. Q. /\ h e. Q. ) -> ( ( g .Q h ) .Q ( *Q ` h ) ) = g ) |
| 18 |
17
|
breq2d |
|- ( ( g e. Q. /\ h e. Q. ) -> ( ( x .Q ( *Q ` h ) ) ( x .Q ( *Q ` h ) ) |
| 19 |
11 18
|
bitrd |
|- ( ( g e. Q. /\ h e. Q. ) -> ( x ( x .Q ( *Q ` h ) ) |
| 20 |
1 2 19
|
syl2an |
|- ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) -> ( x ( x .Q ( *Q ` h ) ) |
| 21 |
|
prcdnq |
|- ( ( A e. P. /\ g e. A ) -> ( ( x .Q ( *Q ` h ) ) ( x .Q ( *Q ` h ) ) e. A ) ) |
| 22 |
21
|
adantr |
|- ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) -> ( ( x .Q ( *Q ` h ) ) ( x .Q ( *Q ` h ) ) e. A ) ) |
| 23 |
20 22
|
sylbid |
|- ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) -> ( x ( x .Q ( *Q ` h ) ) e. A ) ) |
| 24 |
|
df-mp |
|- .P. = ( w e. P. , v e. P. |-> { x | E. y e. w E. z e. v x = ( y .Q z ) } ) |
| 25 |
|
mulclnq |
|- ( ( y e. Q. /\ z e. Q. ) -> ( y .Q z ) e. Q. ) |
| 26 |
24 25
|
genpprecl |
|- ( ( A e. P. /\ B e. P. ) -> ( ( ( x .Q ( *Q ` h ) ) e. A /\ h e. B ) -> ( ( x .Q ( *Q ` h ) ) .Q h ) e. ( A .P. B ) ) ) |
| 27 |
26
|
exp4b |
|- ( A e. P. -> ( B e. P. -> ( ( x .Q ( *Q ` h ) ) e. A -> ( h e. B -> ( ( x .Q ( *Q ` h ) ) .Q h ) e. ( A .P. B ) ) ) ) ) |
| 28 |
27
|
com34 |
|- ( A e. P. -> ( B e. P. -> ( h e. B -> ( ( x .Q ( *Q ` h ) ) e. A -> ( ( x .Q ( *Q ` h ) ) .Q h ) e. ( A .P. B ) ) ) ) ) |
| 29 |
28
|
imp32 |
|- ( ( A e. P. /\ ( B e. P. /\ h e. B ) ) -> ( ( x .Q ( *Q ` h ) ) e. A -> ( ( x .Q ( *Q ` h ) ) .Q h ) e. ( A .P. B ) ) ) |
| 30 |
29
|
adantlr |
|- ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) -> ( ( x .Q ( *Q ` h ) ) e. A -> ( ( x .Q ( *Q ` h ) ) .Q h ) e. ( A .P. B ) ) ) |
| 31 |
23 30
|
syld |
|- ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) -> ( x ( ( x .Q ( *Q ` h ) ) .Q h ) e. ( A .P. B ) ) ) |
| 32 |
31
|
adantr |
|- ( ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) /\ x e. Q. ) -> ( x ( ( x .Q ( *Q ` h ) ) .Q h ) e. ( A .P. B ) ) ) |
| 33 |
2
|
adantl |
|- ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) -> h e. Q. ) |
| 34 |
|
mulassnq |
|- ( ( x .Q ( *Q ` h ) ) .Q h ) = ( x .Q ( ( *Q ` h ) .Q h ) ) |
| 35 |
|
mulcomnq |
|- ( ( *Q ` h ) .Q h ) = ( h .Q ( *Q ` h ) ) |
| 36 |
35 13
|
eqtrid |
|- ( h e. Q. -> ( ( *Q ` h ) .Q h ) = 1Q ) |
| 37 |
36
|
oveq2d |
|- ( h e. Q. -> ( x .Q ( ( *Q ` h ) .Q h ) ) = ( x .Q 1Q ) ) |
| 38 |
34 37
|
eqtrid |
|- ( h e. Q. -> ( ( x .Q ( *Q ` h ) ) .Q h ) = ( x .Q 1Q ) ) |
| 39 |
|
mulidnq |
|- ( x e. Q. -> ( x .Q 1Q ) = x ) |
| 40 |
38 39
|
sylan9eq |
|- ( ( h e. Q. /\ x e. Q. ) -> ( ( x .Q ( *Q ` h ) ) .Q h ) = x ) |
| 41 |
40
|
eleq1d |
|- ( ( h e. Q. /\ x e. Q. ) -> ( ( ( x .Q ( *Q ` h ) ) .Q h ) e. ( A .P. B ) <-> x e. ( A .P. B ) ) ) |
| 42 |
33 41
|
sylan |
|- ( ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) /\ x e. Q. ) -> ( ( ( x .Q ( *Q ` h ) ) .Q h ) e. ( A .P. B ) <-> x e. ( A .P. B ) ) ) |
| 43 |
32 42
|
sylibd |
|- ( ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) /\ x e. Q. ) -> ( x x e. ( A .P. B ) ) ) |