| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-nr |
|- R. = ( ( P. X. P. ) /. ~R ) |
| 2 |
|
oveq1 |
|- ( [ <. x , y >. ] ~R = A -> ( [ <. x , y >. ] ~R .R [ <. z , w >. ] ~R ) = ( A .R [ <. z , w >. ] ~R ) ) |
| 3 |
2
|
eleq1d |
|- ( [ <. x , y >. ] ~R = A -> ( ( [ <. x , y >. ] ~R .R [ <. z , w >. ] ~R ) e. ( ( P. X. P. ) /. ~R ) <-> ( A .R [ <. z , w >. ] ~R ) e. ( ( P. X. P. ) /. ~R ) ) ) |
| 4 |
|
oveq2 |
|- ( [ <. z , w >. ] ~R = B -> ( A .R [ <. z , w >. ] ~R ) = ( A .R B ) ) |
| 5 |
4
|
eleq1d |
|- ( [ <. z , w >. ] ~R = B -> ( ( A .R [ <. z , w >. ] ~R ) e. ( ( P. X. P. ) /. ~R ) <-> ( A .R B ) e. ( ( P. X. P. ) /. ~R ) ) ) |
| 6 |
|
mulsrpr |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( [ <. x , y >. ] ~R .R [ <. z , w >. ] ~R ) = [ <. ( ( x .P. z ) +P. ( y .P. w ) ) , ( ( x .P. w ) +P. ( y .P. z ) ) >. ] ~R ) |
| 7 |
|
mulclpr |
|- ( ( x e. P. /\ z e. P. ) -> ( x .P. z ) e. P. ) |
| 8 |
|
mulclpr |
|- ( ( y e. P. /\ w e. P. ) -> ( y .P. w ) e. P. ) |
| 9 |
|
addclpr |
|- ( ( ( x .P. z ) e. P. /\ ( y .P. w ) e. P. ) -> ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) |
| 10 |
7 8 9
|
syl2an |
|- ( ( ( x e. P. /\ z e. P. ) /\ ( y e. P. /\ w e. P. ) ) -> ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) |
| 11 |
10
|
an4s |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) |
| 12 |
|
mulclpr |
|- ( ( x e. P. /\ w e. P. ) -> ( x .P. w ) e. P. ) |
| 13 |
|
mulclpr |
|- ( ( y e. P. /\ z e. P. ) -> ( y .P. z ) e. P. ) |
| 14 |
|
addclpr |
|- ( ( ( x .P. w ) e. P. /\ ( y .P. z ) e. P. ) -> ( ( x .P. w ) +P. ( y .P. z ) ) e. P. ) |
| 15 |
12 13 14
|
syl2an |
|- ( ( ( x e. P. /\ w e. P. ) /\ ( y e. P. /\ z e. P. ) ) -> ( ( x .P. w ) +P. ( y .P. z ) ) e. P. ) |
| 16 |
15
|
an42s |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( x .P. w ) +P. ( y .P. z ) ) e. P. ) |
| 17 |
11 16
|
jca |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( ( x .P. z ) +P. ( y .P. w ) ) e. P. /\ ( ( x .P. w ) +P. ( y .P. z ) ) e. P. ) ) |
| 18 |
|
opelxpi |
|- ( ( ( ( x .P. z ) +P. ( y .P. w ) ) e. P. /\ ( ( x .P. w ) +P. ( y .P. z ) ) e. P. ) -> <. ( ( x .P. z ) +P. ( y .P. w ) ) , ( ( x .P. w ) +P. ( y .P. z ) ) >. e. ( P. X. P. ) ) |
| 19 |
|
enrex |
|- ~R e. _V |
| 20 |
19
|
ecelqsi |
|- ( <. ( ( x .P. z ) +P. ( y .P. w ) ) , ( ( x .P. w ) +P. ( y .P. z ) ) >. e. ( P. X. P. ) -> [ <. ( ( x .P. z ) +P. ( y .P. w ) ) , ( ( x .P. w ) +P. ( y .P. z ) ) >. ] ~R e. ( ( P. X. P. ) /. ~R ) ) |
| 21 |
17 18 20
|
3syl |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> [ <. ( ( x .P. z ) +P. ( y .P. w ) ) , ( ( x .P. w ) +P. ( y .P. z ) ) >. ] ~R e. ( ( P. X. P. ) /. ~R ) ) |
| 22 |
6 21
|
eqeltrd |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( [ <. x , y >. ] ~R .R [ <. z , w >. ] ~R ) e. ( ( P. X. P. ) /. ~R ) ) |
| 23 |
1 3 5 22
|
2ecoptocl |
|- ( ( A e. R. /\ B e. R. ) -> ( A .R B ) e. ( ( P. X. P. ) /. ~R ) ) |
| 24 |
23 1
|
eleqtrrdi |
|- ( ( A e. R. /\ B e. R. ) -> ( A .R B ) e. R. ) |