| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rphalfcl |
|- ( A e. RR+ -> ( A / 2 ) e. RR+ ) |
| 2 |
1
|
3ad2ant1 |
|- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> ( A / 2 ) e. RR+ ) |
| 3 |
|
abscl |
|- ( C e. CC -> ( abs ` C ) e. RR ) |
| 4 |
3
|
3ad2ant3 |
|- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> ( abs ` C ) e. RR ) |
| 5 |
|
abscl |
|- ( B e. CC -> ( abs ` B ) e. RR ) |
| 6 |
5
|
3ad2ant2 |
|- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> ( abs ` B ) e. RR ) |
| 7 |
|
1re |
|- 1 e. RR |
| 8 |
|
readdcl |
|- ( ( ( abs ` B ) e. RR /\ 1 e. RR ) -> ( ( abs ` B ) + 1 ) e. RR ) |
| 9 |
6 7 8
|
sylancl |
|- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> ( ( abs ` B ) + 1 ) e. RR ) |
| 10 |
|
absge0 |
|- ( B e. CC -> 0 <_ ( abs ` B ) ) |
| 11 |
|
0lt1 |
|- 0 < 1 |
| 12 |
|
addgegt0 |
|- ( ( ( ( abs ` B ) e. RR /\ 1 e. RR ) /\ ( 0 <_ ( abs ` B ) /\ 0 < 1 ) ) -> 0 < ( ( abs ` B ) + 1 ) ) |
| 13 |
12
|
an4s |
|- ( ( ( ( abs ` B ) e. RR /\ 0 <_ ( abs ` B ) ) /\ ( 1 e. RR /\ 0 < 1 ) ) -> 0 < ( ( abs ` B ) + 1 ) ) |
| 14 |
7 11 13
|
mpanr12 |
|- ( ( ( abs ` B ) e. RR /\ 0 <_ ( abs ` B ) ) -> 0 < ( ( abs ` B ) + 1 ) ) |
| 15 |
5 10 14
|
syl2anc |
|- ( B e. CC -> 0 < ( ( abs ` B ) + 1 ) ) |
| 16 |
15
|
3ad2ant2 |
|- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> 0 < ( ( abs ` B ) + 1 ) ) |
| 17 |
9 16
|
elrpd |
|- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> ( ( abs ` B ) + 1 ) e. RR+ ) |
| 18 |
2 17
|
rpdivcld |
|- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) e. RR+ ) |
| 19 |
18
|
rpred |
|- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) e. RR ) |
| 20 |
4 19
|
readdcld |
|- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) e. RR ) |
| 21 |
|
absge0 |
|- ( C e. CC -> 0 <_ ( abs ` C ) ) |
| 22 |
21
|
3ad2ant3 |
|- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> 0 <_ ( abs ` C ) ) |
| 23 |
|
elrp |
|- ( ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) e. RR+ <-> ( ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) e. RR /\ 0 < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) |
| 24 |
|
addgegt0 |
|- ( ( ( ( abs ` C ) e. RR /\ ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) e. RR ) /\ ( 0 <_ ( abs ` C ) /\ 0 < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) -> 0 < ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) |
| 25 |
24
|
an4s |
|- ( ( ( ( abs ` C ) e. RR /\ 0 <_ ( abs ` C ) ) /\ ( ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) e. RR /\ 0 < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) -> 0 < ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) |
| 26 |
23 25
|
sylan2b |
|- ( ( ( ( abs ` C ) e. RR /\ 0 <_ ( abs ` C ) ) /\ ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) e. RR+ ) -> 0 < ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) |
| 27 |
4 22 18 26
|
syl21anc |
|- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> 0 < ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) |
| 28 |
20 27
|
elrpd |
|- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) e. RR+ ) |
| 29 |
2 28
|
rpdivcld |
|- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) e. RR+ ) |
| 30 |
|
simprl |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> u e. CC ) |
| 31 |
|
simpl2 |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> B e. CC ) |
| 32 |
30 31
|
subcld |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( u - B ) e. CC ) |
| 33 |
32
|
abscld |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( abs ` ( u - B ) ) e. RR ) |
| 34 |
2
|
adantr |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( A / 2 ) e. RR+ ) |
| 35 |
34
|
rpred |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( A / 2 ) e. RR ) |
| 36 |
28
|
adantr |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) e. RR+ ) |
| 37 |
33 35 36
|
ltmuldivd |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( abs ` ( u - B ) ) x. ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) < ( A / 2 ) <-> ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) ) ) |
| 38 |
|
simprr |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> v e. CC ) |
| 39 |
|
simpl3 |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> C e. CC ) |
| 40 |
38 39
|
abs2difd |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` v ) - ( abs ` C ) ) <_ ( abs ` ( v - C ) ) ) |
| 41 |
38
|
abscld |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( abs ` v ) e. RR ) |
| 42 |
4
|
adantr |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( abs ` C ) e. RR ) |
| 43 |
41 42
|
resubcld |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` v ) - ( abs ` C ) ) e. RR ) |
| 44 |
38 39
|
subcld |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( v - C ) e. CC ) |
| 45 |
44
|
abscld |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( abs ` ( v - C ) ) e. RR ) |
| 46 |
19
|
adantr |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) e. RR ) |
| 47 |
|
lelttr |
|- ( ( ( ( abs ` v ) - ( abs ` C ) ) e. RR /\ ( abs ` ( v - C ) ) e. RR /\ ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) e. RR ) -> ( ( ( ( abs ` v ) - ( abs ` C ) ) <_ ( abs ` ( v - C ) ) /\ ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) -> ( ( abs ` v ) - ( abs ` C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) |
| 48 |
43 45 46 47
|
syl3anc |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( ( abs ` v ) - ( abs ` C ) ) <_ ( abs ` ( v - C ) ) /\ ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) -> ( ( abs ` v ) - ( abs ` C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) |
| 49 |
40 48
|
mpand |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) -> ( ( abs ` v ) - ( abs ` C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) |
| 50 |
41 42 46
|
ltsubadd2d |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( abs ` v ) - ( abs ` C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) <-> ( abs ` v ) < ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) ) |
| 51 |
49 50
|
sylibd |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) -> ( abs ` v ) < ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) ) |
| 52 |
20
|
adantr |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) e. RR ) |
| 53 |
|
ltle |
|- ( ( ( abs ` v ) e. RR /\ ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) e. RR ) -> ( ( abs ` v ) < ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) -> ( abs ` v ) <_ ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) ) |
| 54 |
41 52 53
|
syl2anc |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` v ) < ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) -> ( abs ` v ) <_ ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) ) |
| 55 |
51 54
|
syld |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) -> ( abs ` v ) <_ ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) ) |
| 56 |
32
|
absge0d |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> 0 <_ ( abs ` ( u - B ) ) ) |
| 57 |
|
lemul2a |
|- ( ( ( ( abs ` v ) e. RR /\ ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) e. RR /\ ( ( abs ` ( u - B ) ) e. RR /\ 0 <_ ( abs ` ( u - B ) ) ) ) /\ ( abs ` v ) <_ ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) -> ( ( abs ` ( u - B ) ) x. ( abs ` v ) ) <_ ( ( abs ` ( u - B ) ) x. ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) ) |
| 58 |
57
|
ex |
|- ( ( ( abs ` v ) e. RR /\ ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) e. RR /\ ( ( abs ` ( u - B ) ) e. RR /\ 0 <_ ( abs ` ( u - B ) ) ) ) -> ( ( abs ` v ) <_ ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) -> ( ( abs ` ( u - B ) ) x. ( abs ` v ) ) <_ ( ( abs ` ( u - B ) ) x. ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) ) ) |
| 59 |
41 52 33 56 58
|
syl112anc |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` v ) <_ ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) -> ( ( abs ` ( u - B ) ) x. ( abs ` v ) ) <_ ( ( abs ` ( u - B ) ) x. ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) ) ) |
| 60 |
33 41
|
remulcld |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` ( u - B ) ) x. ( abs ` v ) ) e. RR ) |
| 61 |
33 52
|
remulcld |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` ( u - B ) ) x. ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) e. RR ) |
| 62 |
|
lelttr |
|- ( ( ( ( abs ` ( u - B ) ) x. ( abs ` v ) ) e. RR /\ ( ( abs ` ( u - B ) ) x. ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) e. RR /\ ( A / 2 ) e. RR ) -> ( ( ( ( abs ` ( u - B ) ) x. ( abs ` v ) ) <_ ( ( abs ` ( u - B ) ) x. ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) /\ ( ( abs ` ( u - B ) ) x. ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) < ( A / 2 ) ) -> ( ( abs ` ( u - B ) ) x. ( abs ` v ) ) < ( A / 2 ) ) ) |
| 63 |
60 61 35 62
|
syl3anc |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( ( abs ` ( u - B ) ) x. ( abs ` v ) ) <_ ( ( abs ` ( u - B ) ) x. ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) /\ ( ( abs ` ( u - B ) ) x. ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) < ( A / 2 ) ) -> ( ( abs ` ( u - B ) ) x. ( abs ` v ) ) < ( A / 2 ) ) ) |
| 64 |
63
|
expd |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( abs ` ( u - B ) ) x. ( abs ` v ) ) <_ ( ( abs ` ( u - B ) ) x. ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) -> ( ( ( abs ` ( u - B ) ) x. ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) < ( A / 2 ) -> ( ( abs ` ( u - B ) ) x. ( abs ` v ) ) < ( A / 2 ) ) ) ) |
| 65 |
55 59 64
|
3syld |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) -> ( ( ( abs ` ( u - B ) ) x. ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) < ( A / 2 ) -> ( ( abs ` ( u - B ) ) x. ( abs ` v ) ) < ( A / 2 ) ) ) ) |
| 66 |
65
|
com23 |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( abs ` ( u - B ) ) x. ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) < ( A / 2 ) -> ( ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) -> ( ( abs ` ( u - B ) ) x. ( abs ` v ) ) < ( A / 2 ) ) ) ) |
| 67 |
37 66
|
sylbird |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) -> ( ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) -> ( ( abs ` ( u - B ) ) x. ( abs ` v ) ) < ( A / 2 ) ) ) ) |
| 68 |
67
|
impd |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) /\ ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) -> ( ( abs ` ( u - B ) ) x. ( abs ` v ) ) < ( A / 2 ) ) ) |
| 69 |
32 38
|
absmuld |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( abs ` ( ( u - B ) x. v ) ) = ( ( abs ` ( u - B ) ) x. ( abs ` v ) ) ) |
| 70 |
30 31 38
|
subdird |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( u - B ) x. v ) = ( ( u x. v ) - ( B x. v ) ) ) |
| 71 |
70
|
fveq2d |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( abs ` ( ( u - B ) x. v ) ) = ( abs ` ( ( u x. v ) - ( B x. v ) ) ) ) |
| 72 |
69 71
|
eqtr3d |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` ( u - B ) ) x. ( abs ` v ) ) = ( abs ` ( ( u x. v ) - ( B x. v ) ) ) ) |
| 73 |
72
|
breq1d |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( abs ` ( u - B ) ) x. ( abs ` v ) ) < ( A / 2 ) <-> ( abs ` ( ( u x. v ) - ( B x. v ) ) ) < ( A / 2 ) ) ) |
| 74 |
68 73
|
sylibd |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) /\ ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) -> ( abs ` ( ( u x. v ) - ( B x. v ) ) ) < ( A / 2 ) ) ) |
| 75 |
17
|
adantr |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` B ) + 1 ) e. RR+ ) |
| 76 |
45 35 75
|
ltmuldiv2d |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( ( abs ` B ) + 1 ) x. ( abs ` ( v - C ) ) ) < ( A / 2 ) <-> ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) |
| 77 |
31 38 39
|
subdid |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( B x. ( v - C ) ) = ( ( B x. v ) - ( B x. C ) ) ) |
| 78 |
77
|
fveq2d |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( abs ` ( B x. ( v - C ) ) ) = ( abs ` ( ( B x. v ) - ( B x. C ) ) ) ) |
| 79 |
31 44
|
absmuld |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( abs ` ( B x. ( v - C ) ) ) = ( ( abs ` B ) x. ( abs ` ( v - C ) ) ) ) |
| 80 |
78 79
|
eqtr3d |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( abs ` ( ( B x. v ) - ( B x. C ) ) ) = ( ( abs ` B ) x. ( abs ` ( v - C ) ) ) ) |
| 81 |
31
|
abscld |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( abs ` B ) e. RR ) |
| 82 |
81
|
lep1d |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( abs ` B ) <_ ( ( abs ` B ) + 1 ) ) |
| 83 |
9
|
adantr |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` B ) + 1 ) e. RR ) |
| 84 |
|
abscl |
|- ( ( v - C ) e. CC -> ( abs ` ( v - C ) ) e. RR ) |
| 85 |
|
absge0 |
|- ( ( v - C ) e. CC -> 0 <_ ( abs ` ( v - C ) ) ) |
| 86 |
84 85
|
jca |
|- ( ( v - C ) e. CC -> ( ( abs ` ( v - C ) ) e. RR /\ 0 <_ ( abs ` ( v - C ) ) ) ) |
| 87 |
|
lemul1a |
|- ( ( ( ( abs ` B ) e. RR /\ ( ( abs ` B ) + 1 ) e. RR /\ ( ( abs ` ( v - C ) ) e. RR /\ 0 <_ ( abs ` ( v - C ) ) ) ) /\ ( abs ` B ) <_ ( ( abs ` B ) + 1 ) ) -> ( ( abs ` B ) x. ( abs ` ( v - C ) ) ) <_ ( ( ( abs ` B ) + 1 ) x. ( abs ` ( v - C ) ) ) ) |
| 88 |
87
|
ex |
|- ( ( ( abs ` B ) e. RR /\ ( ( abs ` B ) + 1 ) e. RR /\ ( ( abs ` ( v - C ) ) e. RR /\ 0 <_ ( abs ` ( v - C ) ) ) ) -> ( ( abs ` B ) <_ ( ( abs ` B ) + 1 ) -> ( ( abs ` B ) x. ( abs ` ( v - C ) ) ) <_ ( ( ( abs ` B ) + 1 ) x. ( abs ` ( v - C ) ) ) ) ) |
| 89 |
86 88
|
syl3an3 |
|- ( ( ( abs ` B ) e. RR /\ ( ( abs ` B ) + 1 ) e. RR /\ ( v - C ) e. CC ) -> ( ( abs ` B ) <_ ( ( abs ` B ) + 1 ) -> ( ( abs ` B ) x. ( abs ` ( v - C ) ) ) <_ ( ( ( abs ` B ) + 1 ) x. ( abs ` ( v - C ) ) ) ) ) |
| 90 |
81 83 44 89
|
syl3anc |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` B ) <_ ( ( abs ` B ) + 1 ) -> ( ( abs ` B ) x. ( abs ` ( v - C ) ) ) <_ ( ( ( abs ` B ) + 1 ) x. ( abs ` ( v - C ) ) ) ) ) |
| 91 |
82 90
|
mpd |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` B ) x. ( abs ` ( v - C ) ) ) <_ ( ( ( abs ` B ) + 1 ) x. ( abs ` ( v - C ) ) ) ) |
| 92 |
80 91
|
eqbrtrd |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( abs ` ( ( B x. v ) - ( B x. C ) ) ) <_ ( ( ( abs ` B ) + 1 ) x. ( abs ` ( v - C ) ) ) ) |
| 93 |
31 38
|
mulcld |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( B x. v ) e. CC ) |
| 94 |
31 39
|
mulcld |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( B x. C ) e. CC ) |
| 95 |
93 94
|
subcld |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( B x. v ) - ( B x. C ) ) e. CC ) |
| 96 |
95
|
abscld |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( abs ` ( ( B x. v ) - ( B x. C ) ) ) e. RR ) |
| 97 |
83 45
|
remulcld |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( abs ` B ) + 1 ) x. ( abs ` ( v - C ) ) ) e. RR ) |
| 98 |
|
lelttr |
|- ( ( ( abs ` ( ( B x. v ) - ( B x. C ) ) ) e. RR /\ ( ( ( abs ` B ) + 1 ) x. ( abs ` ( v - C ) ) ) e. RR /\ ( A / 2 ) e. RR ) -> ( ( ( abs ` ( ( B x. v ) - ( B x. C ) ) ) <_ ( ( ( abs ` B ) + 1 ) x. ( abs ` ( v - C ) ) ) /\ ( ( ( abs ` B ) + 1 ) x. ( abs ` ( v - C ) ) ) < ( A / 2 ) ) -> ( abs ` ( ( B x. v ) - ( B x. C ) ) ) < ( A / 2 ) ) ) |
| 99 |
96 97 35 98
|
syl3anc |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( abs ` ( ( B x. v ) - ( B x. C ) ) ) <_ ( ( ( abs ` B ) + 1 ) x. ( abs ` ( v - C ) ) ) /\ ( ( ( abs ` B ) + 1 ) x. ( abs ` ( v - C ) ) ) < ( A / 2 ) ) -> ( abs ` ( ( B x. v ) - ( B x. C ) ) ) < ( A / 2 ) ) ) |
| 100 |
92 99
|
mpand |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( ( abs ` B ) + 1 ) x. ( abs ` ( v - C ) ) ) < ( A / 2 ) -> ( abs ` ( ( B x. v ) - ( B x. C ) ) ) < ( A / 2 ) ) ) |
| 101 |
76 100
|
sylbird |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) -> ( abs ` ( ( B x. v ) - ( B x. C ) ) ) < ( A / 2 ) ) ) |
| 102 |
101
|
adantld |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) /\ ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) -> ( abs ` ( ( B x. v ) - ( B x. C ) ) ) < ( A / 2 ) ) ) |
| 103 |
74 102
|
jcad |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) /\ ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) -> ( ( abs ` ( ( u x. v ) - ( B x. v ) ) ) < ( A / 2 ) /\ ( abs ` ( ( B x. v ) - ( B x. C ) ) ) < ( A / 2 ) ) ) ) |
| 104 |
|
mulcl |
|- ( ( u e. CC /\ v e. CC ) -> ( u x. v ) e. CC ) |
| 105 |
104
|
adantl |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( u x. v ) e. CC ) |
| 106 |
|
simpl1 |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> A e. RR+ ) |
| 107 |
106
|
rpred |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> A e. RR ) |
| 108 |
|
abs3lem |
|- ( ( ( ( u x. v ) e. CC /\ ( B x. C ) e. CC ) /\ ( ( B x. v ) e. CC /\ A e. RR ) ) -> ( ( ( abs ` ( ( u x. v ) - ( B x. v ) ) ) < ( A / 2 ) /\ ( abs ` ( ( B x. v ) - ( B x. C ) ) ) < ( A / 2 ) ) -> ( abs ` ( ( u x. v ) - ( B x. C ) ) ) < A ) ) |
| 109 |
105 94 93 107 108
|
syl22anc |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( abs ` ( ( u x. v ) - ( B x. v ) ) ) < ( A / 2 ) /\ ( abs ` ( ( B x. v ) - ( B x. C ) ) ) < ( A / 2 ) ) -> ( abs ` ( ( u x. v ) - ( B x. C ) ) ) < A ) ) |
| 110 |
103 109
|
syld |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) /\ ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) -> ( abs ` ( ( u x. v ) - ( B x. C ) ) ) < A ) ) |
| 111 |
110
|
ralrimivva |
|- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) /\ ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) -> ( abs ` ( ( u x. v ) - ( B x. C ) ) ) < A ) ) |
| 112 |
|
breq2 |
|- ( y = ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) -> ( ( abs ` ( u - B ) ) < y <-> ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) ) ) |
| 113 |
112
|
anbi1d |
|- ( y = ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) -> ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) <-> ( ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) /\ ( abs ` ( v - C ) ) < z ) ) ) |
| 114 |
113
|
imbi1d |
|- ( y = ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) -> ( ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u x. v ) - ( B x. C ) ) ) < A ) <-> ( ( ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u x. v ) - ( B x. C ) ) ) < A ) ) ) |
| 115 |
114
|
2ralbidv |
|- ( y = ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) -> ( A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u x. v ) - ( B x. C ) ) ) < A ) <-> A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u x. v ) - ( B x. C ) ) ) < A ) ) ) |
| 116 |
|
breq2 |
|- ( z = ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) -> ( ( abs ` ( v - C ) ) < z <-> ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) |
| 117 |
116
|
anbi2d |
|- ( z = ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) -> ( ( ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) /\ ( abs ` ( v - C ) ) < z ) <-> ( ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) /\ ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) ) |
| 118 |
117
|
imbi1d |
|- ( z = ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) -> ( ( ( ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u x. v ) - ( B x. C ) ) ) < A ) <-> ( ( ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) /\ ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) -> ( abs ` ( ( u x. v ) - ( B x. C ) ) ) < A ) ) ) |
| 119 |
118
|
2ralbidv |
|- ( z = ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) -> ( A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u x. v ) - ( B x. C ) ) ) < A ) <-> A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) /\ ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) -> ( abs ` ( ( u x. v ) - ( B x. C ) ) ) < A ) ) ) |
| 120 |
115 119
|
rspc2ev |
|- ( ( ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) e. RR+ /\ ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) e. RR+ /\ A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) /\ ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) -> ( abs ` ( ( u x. v ) - ( B x. C ) ) ) < A ) ) -> E. y e. RR+ E. z e. RR+ A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u x. v ) - ( B x. C ) ) ) < A ) ) |
| 121 |
29 18 111 120
|
syl3anc |
|- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> E. y e. RR+ E. z e. RR+ A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u x. v ) - ( B x. C ) ) ) < A ) ) |