| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulcncf.1 |
|- ( ph -> ( x e. X |-> A ) e. ( X -cn-> CC ) ) |
| 2 |
|
mulcncf.2 |
|- ( ph -> ( x e. X |-> B ) e. ( X -cn-> CC ) ) |
| 3 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 4 |
3
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 5 |
|
cncfrss |
|- ( ( x e. X |-> A ) e. ( X -cn-> CC ) -> X C_ CC ) |
| 6 |
1 5
|
syl |
|- ( ph -> X C_ CC ) |
| 7 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ X C_ CC ) -> ( ( TopOpen ` CCfld ) |`t X ) e. ( TopOn ` X ) ) |
| 8 |
4 6 7
|
sylancr |
|- ( ph -> ( ( TopOpen ` CCfld ) |`t X ) e. ( TopOn ` X ) ) |
| 9 |
|
ssid |
|- CC C_ CC |
| 10 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t X ) = ( ( TopOpen ` CCfld ) |`t X ) |
| 11 |
4
|
toponrestid |
|- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 12 |
3 10 11
|
cncfcn |
|- ( ( X C_ CC /\ CC C_ CC ) -> ( X -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t X ) Cn ( TopOpen ` CCfld ) ) ) |
| 13 |
6 9 12
|
sylancl |
|- ( ph -> ( X -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t X ) Cn ( TopOpen ` CCfld ) ) ) |
| 14 |
1 13
|
eleqtrd |
|- ( ph -> ( x e. X |-> A ) e. ( ( ( TopOpen ` CCfld ) |`t X ) Cn ( TopOpen ` CCfld ) ) ) |
| 15 |
2 13
|
eleqtrd |
|- ( ph -> ( x e. X |-> B ) e. ( ( ( TopOpen ` CCfld ) |`t X ) Cn ( TopOpen ` CCfld ) ) ) |
| 16 |
4
|
a1i |
|- ( ph -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
| 17 |
3
|
mpomulcn |
|- ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 18 |
17
|
a1i |
|- ( ph -> ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 19 |
|
oveq12 |
|- ( ( u = A /\ v = B ) -> ( u x. v ) = ( A x. B ) ) |
| 20 |
8 14 15 16 16 18 19
|
cnmpt12 |
|- ( ph -> ( x e. X |-> ( A x. B ) ) e. ( ( ( TopOpen ` CCfld ) |`t X ) Cn ( TopOpen ` CCfld ) ) ) |
| 21 |
20 13
|
eleqtrrd |
|- ( ph -> ( x e. X |-> ( A x. B ) ) e. ( X -cn-> CC ) ) |