Description: Commutative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | addcld.1 | |- ( ph -> A e. CC ) |
|
addcld.2 | |- ( ph -> B e. CC ) |
||
Assertion | mulcomd | |- ( ph -> ( A x. B ) = ( B x. A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcld.1 | |- ( ph -> A e. CC ) |
|
2 | addcld.2 | |- ( ph -> B e. CC ) |
|
3 | mulcom | |- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) = ( B x. A ) ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> ( A x. B ) = ( B x. A ) ) |