Metamath Proof Explorer


Theorem mulcomd

Description: Commutative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses addcld.1
|- ( ph -> A e. CC )
addcld.2
|- ( ph -> B e. CC )
Assertion mulcomd
|- ( ph -> ( A x. B ) = ( B x. A ) )

Proof

Step Hyp Ref Expression
1 addcld.1
 |-  ( ph -> A e. CC )
2 addcld.2
 |-  ( ph -> B e. CC )
3 mulcom
 |-  ( ( A e. CC /\ B e. CC ) -> ( A x. B ) = ( B x. A ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( A x. B ) = ( B x. A ) )