Metamath Proof Explorer


Theorem mulcomli

Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994)

Ref Expression
Hypotheses axi.1
|- A e. CC
axi.2
|- B e. CC
mulcomli.3
|- ( A x. B ) = C
Assertion mulcomli
|- ( B x. A ) = C

Proof

Step Hyp Ref Expression
1 axi.1
 |-  A e. CC
2 axi.2
 |-  B e. CC
3 mulcomli.3
 |-  ( A x. B ) = C
4 2 1 mulcomi
 |-  ( B x. A ) = ( A x. B )
5 4 3 eqtri
 |-  ( B x. A ) = C