Step |
Hyp |
Ref |
Expression |
1 |
|
mulcompq |
|- ( A .pQ B ) = ( B .pQ A ) |
2 |
1
|
fveq2i |
|- ( /Q ` ( A .pQ B ) ) = ( /Q ` ( B .pQ A ) ) |
3 |
|
mulpqnq |
|- ( ( A e. Q. /\ B e. Q. ) -> ( A .Q B ) = ( /Q ` ( A .pQ B ) ) ) |
4 |
|
mulpqnq |
|- ( ( B e. Q. /\ A e. Q. ) -> ( B .Q A ) = ( /Q ` ( B .pQ A ) ) ) |
5 |
4
|
ancoms |
|- ( ( A e. Q. /\ B e. Q. ) -> ( B .Q A ) = ( /Q ` ( B .pQ A ) ) ) |
6 |
2 3 5
|
3eqtr4a |
|- ( ( A e. Q. /\ B e. Q. ) -> ( A .Q B ) = ( B .Q A ) ) |
7 |
|
mulnqf |
|- .Q : ( Q. X. Q. ) --> Q. |
8 |
7
|
fdmi |
|- dom .Q = ( Q. X. Q. ) |
9 |
8
|
ndmovcom |
|- ( -. ( A e. Q. /\ B e. Q. ) -> ( A .Q B ) = ( B .Q A ) ) |
10 |
6 9
|
pm2.61i |
|- ( A .Q B ) = ( B .Q A ) |