Step |
Hyp |
Ref |
Expression |
1 |
|
simp1l |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> A e. RR ) |
2 |
1
|
recnd |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> A e. CC ) |
3 |
2
|
mul01d |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> ( A x. 0 ) = 0 ) |
4 |
3
|
oveq1d |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> ( ( A x. 0 ) ^c C ) = ( 0 ^c C ) ) |
5 |
|
simp3 |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> C e. CC ) |
6 |
2 5
|
mulcxplem |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> ( 0 ^c C ) = ( ( A ^c C ) x. ( 0 ^c C ) ) ) |
7 |
4 6
|
eqtrd |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> ( ( A x. 0 ) ^c C ) = ( ( A ^c C ) x. ( 0 ^c C ) ) ) |
8 |
|
oveq2 |
|- ( B = 0 -> ( A x. B ) = ( A x. 0 ) ) |
9 |
8
|
oveq1d |
|- ( B = 0 -> ( ( A x. B ) ^c C ) = ( ( A x. 0 ) ^c C ) ) |
10 |
|
oveq1 |
|- ( B = 0 -> ( B ^c C ) = ( 0 ^c C ) ) |
11 |
10
|
oveq2d |
|- ( B = 0 -> ( ( A ^c C ) x. ( B ^c C ) ) = ( ( A ^c C ) x. ( 0 ^c C ) ) ) |
12 |
9 11
|
eqeq12d |
|- ( B = 0 -> ( ( ( A x. B ) ^c C ) = ( ( A ^c C ) x. ( B ^c C ) ) <-> ( ( A x. 0 ) ^c C ) = ( ( A ^c C ) x. ( 0 ^c C ) ) ) ) |
13 |
7 12
|
syl5ibrcom |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> ( B = 0 -> ( ( A x. B ) ^c C ) = ( ( A ^c C ) x. ( B ^c C ) ) ) ) |
14 |
|
simp2l |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> B e. RR ) |
15 |
14
|
recnd |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> B e. CC ) |
16 |
15
|
mul02d |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> ( 0 x. B ) = 0 ) |
17 |
16
|
oveq1d |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> ( ( 0 x. B ) ^c C ) = ( 0 ^c C ) ) |
18 |
15 5
|
mulcxplem |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> ( 0 ^c C ) = ( ( B ^c C ) x. ( 0 ^c C ) ) ) |
19 |
|
cxpcl |
|- ( ( B e. CC /\ C e. CC ) -> ( B ^c C ) e. CC ) |
20 |
15 5 19
|
syl2anc |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> ( B ^c C ) e. CC ) |
21 |
|
0cn |
|- 0 e. CC |
22 |
|
cxpcl |
|- ( ( 0 e. CC /\ C e. CC ) -> ( 0 ^c C ) e. CC ) |
23 |
21 5 22
|
sylancr |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> ( 0 ^c C ) e. CC ) |
24 |
20 23
|
mulcomd |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> ( ( B ^c C ) x. ( 0 ^c C ) ) = ( ( 0 ^c C ) x. ( B ^c C ) ) ) |
25 |
18 24
|
eqtrd |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> ( 0 ^c C ) = ( ( 0 ^c C ) x. ( B ^c C ) ) ) |
26 |
17 25
|
eqtrd |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> ( ( 0 x. B ) ^c C ) = ( ( 0 ^c C ) x. ( B ^c C ) ) ) |
27 |
|
oveq1 |
|- ( A = 0 -> ( A x. B ) = ( 0 x. B ) ) |
28 |
27
|
oveq1d |
|- ( A = 0 -> ( ( A x. B ) ^c C ) = ( ( 0 x. B ) ^c C ) ) |
29 |
|
oveq1 |
|- ( A = 0 -> ( A ^c C ) = ( 0 ^c C ) ) |
30 |
29
|
oveq1d |
|- ( A = 0 -> ( ( A ^c C ) x. ( B ^c C ) ) = ( ( 0 ^c C ) x. ( B ^c C ) ) ) |
31 |
28 30
|
eqeq12d |
|- ( A = 0 -> ( ( ( A x. B ) ^c C ) = ( ( A ^c C ) x. ( B ^c C ) ) <-> ( ( 0 x. B ) ^c C ) = ( ( 0 ^c C ) x. ( B ^c C ) ) ) ) |
32 |
26 31
|
syl5ibrcom |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> ( A = 0 -> ( ( A x. B ) ^c C ) = ( ( A ^c C ) x. ( B ^c C ) ) ) ) |
33 |
32
|
a1dd |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> ( A = 0 -> ( B =/= 0 -> ( ( A x. B ) ^c C ) = ( ( A ^c C ) x. ( B ^c C ) ) ) ) ) |
34 |
1
|
adantr |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> A e. RR ) |
35 |
|
simpl1r |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> 0 <_ A ) |
36 |
|
simprl |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> A =/= 0 ) |
37 |
34 35 36
|
ne0gt0d |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> 0 < A ) |
38 |
34 37
|
elrpd |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> A e. RR+ ) |
39 |
14
|
adantr |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> B e. RR ) |
40 |
|
simpl2r |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> 0 <_ B ) |
41 |
|
simprr |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> B =/= 0 ) |
42 |
39 40 41
|
ne0gt0d |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> 0 < B ) |
43 |
39 42
|
elrpd |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> B e. RR+ ) |
44 |
38 43
|
relogmuld |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( log ` ( A x. B ) ) = ( ( log ` A ) + ( log ` B ) ) ) |
45 |
44
|
oveq2d |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( C x. ( log ` ( A x. B ) ) ) = ( C x. ( ( log ` A ) + ( log ` B ) ) ) ) |
46 |
5
|
adantr |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> C e. CC ) |
47 |
2
|
adantr |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> A e. CC ) |
48 |
47 36
|
logcld |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( log ` A ) e. CC ) |
49 |
15
|
adantr |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> B e. CC ) |
50 |
49 41
|
logcld |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( log ` B ) e. CC ) |
51 |
46 48 50
|
adddid |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( C x. ( ( log ` A ) + ( log ` B ) ) ) = ( ( C x. ( log ` A ) ) + ( C x. ( log ` B ) ) ) ) |
52 |
45 51
|
eqtrd |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( C x. ( log ` ( A x. B ) ) ) = ( ( C x. ( log ` A ) ) + ( C x. ( log ` B ) ) ) ) |
53 |
52
|
fveq2d |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( exp ` ( C x. ( log ` ( A x. B ) ) ) ) = ( exp ` ( ( C x. ( log ` A ) ) + ( C x. ( log ` B ) ) ) ) ) |
54 |
46 48
|
mulcld |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( C x. ( log ` A ) ) e. CC ) |
55 |
46 50
|
mulcld |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( C x. ( log ` B ) ) e. CC ) |
56 |
|
efadd |
|- ( ( ( C x. ( log ` A ) ) e. CC /\ ( C x. ( log ` B ) ) e. CC ) -> ( exp ` ( ( C x. ( log ` A ) ) + ( C x. ( log ` B ) ) ) ) = ( ( exp ` ( C x. ( log ` A ) ) ) x. ( exp ` ( C x. ( log ` B ) ) ) ) ) |
57 |
54 55 56
|
syl2anc |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( exp ` ( ( C x. ( log ` A ) ) + ( C x. ( log ` B ) ) ) ) = ( ( exp ` ( C x. ( log ` A ) ) ) x. ( exp ` ( C x. ( log ` B ) ) ) ) ) |
58 |
53 57
|
eqtrd |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( exp ` ( C x. ( log ` ( A x. B ) ) ) ) = ( ( exp ` ( C x. ( log ` A ) ) ) x. ( exp ` ( C x. ( log ` B ) ) ) ) ) |
59 |
47 49
|
mulcld |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( A x. B ) e. CC ) |
60 |
47 49 36 41
|
mulne0d |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( A x. B ) =/= 0 ) |
61 |
|
cxpef |
|- ( ( ( A x. B ) e. CC /\ ( A x. B ) =/= 0 /\ C e. CC ) -> ( ( A x. B ) ^c C ) = ( exp ` ( C x. ( log ` ( A x. B ) ) ) ) ) |
62 |
59 60 46 61
|
syl3anc |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( ( A x. B ) ^c C ) = ( exp ` ( C x. ( log ` ( A x. B ) ) ) ) ) |
63 |
|
cxpef |
|- ( ( A e. CC /\ A =/= 0 /\ C e. CC ) -> ( A ^c C ) = ( exp ` ( C x. ( log ` A ) ) ) ) |
64 |
47 36 46 63
|
syl3anc |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( A ^c C ) = ( exp ` ( C x. ( log ` A ) ) ) ) |
65 |
|
cxpef |
|- ( ( B e. CC /\ B =/= 0 /\ C e. CC ) -> ( B ^c C ) = ( exp ` ( C x. ( log ` B ) ) ) ) |
66 |
49 41 46 65
|
syl3anc |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( B ^c C ) = ( exp ` ( C x. ( log ` B ) ) ) ) |
67 |
64 66
|
oveq12d |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( ( A ^c C ) x. ( B ^c C ) ) = ( ( exp ` ( C x. ( log ` A ) ) ) x. ( exp ` ( C x. ( log ` B ) ) ) ) ) |
68 |
58 62 67
|
3eqtr4d |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( ( A x. B ) ^c C ) = ( ( A ^c C ) x. ( B ^c C ) ) ) |
69 |
68
|
exp32 |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> ( A =/= 0 -> ( B =/= 0 -> ( ( A x. B ) ^c C ) = ( ( A ^c C ) x. ( B ^c C ) ) ) ) ) |
70 |
33 69
|
pm2.61dne |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> ( B =/= 0 -> ( ( A x. B ) ^c C ) = ( ( A ^c C ) x. ( B ^c C ) ) ) ) |
71 |
13 70
|
pm2.61dne |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> ( ( A x. B ) ^c C ) = ( ( A ^c C ) x. ( B ^c C ) ) ) |