Metamath Proof Explorer


Theorem mulcxplem

Description: Lemma for mulcxp . (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Hypotheses mulcxp.1
|- ( ph -> A e. CC )
mulcxp.2
|- ( ph -> C e. CC )
Assertion mulcxplem
|- ( ph -> ( 0 ^c C ) = ( ( A ^c C ) x. ( 0 ^c C ) ) )

Proof

Step Hyp Ref Expression
1 mulcxp.1
 |-  ( ph -> A e. CC )
2 mulcxp.2
 |-  ( ph -> C e. CC )
3 oveq2
 |-  ( C = 0 -> ( 0 ^c C ) = ( 0 ^c 0 ) )
4 0cn
 |-  0 e. CC
5 cxp0
 |-  ( 0 e. CC -> ( 0 ^c 0 ) = 1 )
6 4 5 ax-mp
 |-  ( 0 ^c 0 ) = 1
7 3 6 eqtrdi
 |-  ( C = 0 -> ( 0 ^c C ) = 1 )
8 oveq2
 |-  ( C = 0 -> ( A ^c C ) = ( A ^c 0 ) )
9 8 7 oveq12d
 |-  ( C = 0 -> ( ( A ^c C ) x. ( 0 ^c C ) ) = ( ( A ^c 0 ) x. 1 ) )
10 7 9 eqeq12d
 |-  ( C = 0 -> ( ( 0 ^c C ) = ( ( A ^c C ) x. ( 0 ^c C ) ) <-> 1 = ( ( A ^c 0 ) x. 1 ) ) )
11 cxpcl
 |-  ( ( A e. CC /\ C e. CC ) -> ( A ^c C ) e. CC )
12 1 2 11 syl2anc
 |-  ( ph -> ( A ^c C ) e. CC )
13 12 adantr
 |-  ( ( ph /\ C =/= 0 ) -> ( A ^c C ) e. CC )
14 13 mul01d
 |-  ( ( ph /\ C =/= 0 ) -> ( ( A ^c C ) x. 0 ) = 0 )
15 0cxp
 |-  ( ( C e. CC /\ C =/= 0 ) -> ( 0 ^c C ) = 0 )
16 2 15 sylan
 |-  ( ( ph /\ C =/= 0 ) -> ( 0 ^c C ) = 0 )
17 16 oveq2d
 |-  ( ( ph /\ C =/= 0 ) -> ( ( A ^c C ) x. ( 0 ^c C ) ) = ( ( A ^c C ) x. 0 ) )
18 14 17 16 3eqtr4rd
 |-  ( ( ph /\ C =/= 0 ) -> ( 0 ^c C ) = ( ( A ^c C ) x. ( 0 ^c C ) ) )
19 cxp0
 |-  ( A e. CC -> ( A ^c 0 ) = 1 )
20 1 19 syl
 |-  ( ph -> ( A ^c 0 ) = 1 )
21 20 oveq1d
 |-  ( ph -> ( ( A ^c 0 ) x. 1 ) = ( 1 x. 1 ) )
22 1t1e1
 |-  ( 1 x. 1 ) = 1
23 21 22 eqtr2di
 |-  ( ph -> 1 = ( ( A ^c 0 ) x. 1 ) )
24 10 18 23 pm2.61ne
 |-  ( ph -> ( 0 ^c C ) = ( ( A ^c C ) x. ( 0 ^c C ) ) )