Step |
Hyp |
Ref |
Expression |
1 |
|
simp3l |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> C e. CC ) |
2 |
|
simp1 |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> A e. CC ) |
3 |
1 2
|
mulcld |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( C x. A ) e. CC ) |
4 |
|
divdir |
|- ( ( ( C x. A ) e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C x. A ) + B ) / C ) = ( ( ( C x. A ) / C ) + ( B / C ) ) ) |
5 |
3 4
|
syld3an1 |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C x. A ) + B ) / C ) = ( ( ( C x. A ) / C ) + ( B / C ) ) ) |
6 |
|
3anass |
|- ( ( A e. CC /\ C e. CC /\ C =/= 0 ) <-> ( A e. CC /\ ( C e. CC /\ C =/= 0 ) ) ) |
7 |
6
|
biimpri |
|- ( ( A e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A e. CC /\ C e. CC /\ C =/= 0 ) ) |
8 |
7
|
3adant2 |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A e. CC /\ C e. CC /\ C =/= 0 ) ) |
9 |
|
divcan3 |
|- ( ( A e. CC /\ C e. CC /\ C =/= 0 ) -> ( ( C x. A ) / C ) = A ) |
10 |
8 9
|
syl |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. A ) / C ) = A ) |
11 |
10
|
oveq1d |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C x. A ) / C ) + ( B / C ) ) = ( A + ( B / C ) ) ) |
12 |
5 11
|
eqtrd |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C x. A ) + B ) / C ) = ( A + ( B / C ) ) ) |