Step |
Hyp |
Ref |
Expression |
1 |
|
zmulcl |
|- ( ( K e. ZZ /\ M e. ZZ ) -> ( K x. M ) e. ZZ ) |
2 |
1
|
anim1i |
|- ( ( ( K e. ZZ /\ M e. ZZ ) /\ N e. ZZ ) -> ( ( K x. M ) e. ZZ /\ N e. ZZ ) ) |
3 |
2
|
3impa |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) e. ZZ /\ N e. ZZ ) ) |
4 |
|
3simpb |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K e. ZZ /\ N e. ZZ ) ) |
5 |
|
zmulcl |
|- ( ( x e. ZZ /\ M e. ZZ ) -> ( x x. M ) e. ZZ ) |
6 |
5
|
ancoms |
|- ( ( M e. ZZ /\ x e. ZZ ) -> ( x x. M ) e. ZZ ) |
7 |
6
|
3ad2antl2 |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> ( x x. M ) e. ZZ ) |
8 |
|
zcn |
|- ( x e. ZZ -> x e. CC ) |
9 |
|
zcn |
|- ( K e. ZZ -> K e. CC ) |
10 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
11 |
|
mulass |
|- ( ( x e. CC /\ K e. CC /\ M e. CC ) -> ( ( x x. K ) x. M ) = ( x x. ( K x. M ) ) ) |
12 |
|
mul32 |
|- ( ( x e. CC /\ K e. CC /\ M e. CC ) -> ( ( x x. K ) x. M ) = ( ( x x. M ) x. K ) ) |
13 |
11 12
|
eqtr3d |
|- ( ( x e. CC /\ K e. CC /\ M e. CC ) -> ( x x. ( K x. M ) ) = ( ( x x. M ) x. K ) ) |
14 |
8 9 10 13
|
syl3an |
|- ( ( x e. ZZ /\ K e. ZZ /\ M e. ZZ ) -> ( x x. ( K x. M ) ) = ( ( x x. M ) x. K ) ) |
15 |
14
|
3coml |
|- ( ( K e. ZZ /\ M e. ZZ /\ x e. ZZ ) -> ( x x. ( K x. M ) ) = ( ( x x. M ) x. K ) ) |
16 |
15
|
3expa |
|- ( ( ( K e. ZZ /\ M e. ZZ ) /\ x e. ZZ ) -> ( x x. ( K x. M ) ) = ( ( x x. M ) x. K ) ) |
17 |
16
|
3adantl3 |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> ( x x. ( K x. M ) ) = ( ( x x. M ) x. K ) ) |
18 |
17
|
eqeq1d |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> ( ( x x. ( K x. M ) ) = N <-> ( ( x x. M ) x. K ) = N ) ) |
19 |
18
|
biimpd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> ( ( x x. ( K x. M ) ) = N -> ( ( x x. M ) x. K ) = N ) ) |
20 |
3 4 7 19
|
dvds1lem |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) || N -> K || N ) ) |