Step |
Hyp |
Ref |
Expression |
1 |
|
muval |
|- ( A e. NN -> ( mmu ` A ) = if ( E. p e. Prime ( p ^ 2 ) || A , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) ) |
2 |
|
iftrue |
|- ( E. p e. Prime ( p ^ 2 ) || A -> if ( E. p e. Prime ( p ^ 2 ) || A , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) = 0 ) |
3 |
1 2
|
sylan9eq |
|- ( ( A e. NN /\ E. p e. Prime ( p ^ 2 ) || A ) -> ( mmu ` A ) = 0 ) |
4 |
3
|
fveq2d |
|- ( ( A e. NN /\ E. p e. Prime ( p ^ 2 ) || A ) -> ( abs ` ( mmu ` A ) ) = ( abs ` 0 ) ) |
5 |
|
abs0 |
|- ( abs ` 0 ) = 0 |
6 |
|
0le1 |
|- 0 <_ 1 |
7 |
5 6
|
eqbrtri |
|- ( abs ` 0 ) <_ 1 |
8 |
4 7
|
eqbrtrdi |
|- ( ( A e. NN /\ E. p e. Prime ( p ^ 2 ) || A ) -> ( abs ` ( mmu ` A ) ) <_ 1 ) |
9 |
|
iffalse |
|- ( -. E. p e. Prime ( p ^ 2 ) || A -> if ( E. p e. Prime ( p ^ 2 ) || A , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) = ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) |
10 |
1 9
|
sylan9eq |
|- ( ( A e. NN /\ -. E. p e. Prime ( p ^ 2 ) || A ) -> ( mmu ` A ) = ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) |
11 |
10
|
fveq2d |
|- ( ( A e. NN /\ -. E. p e. Prime ( p ^ 2 ) || A ) -> ( abs ` ( mmu ` A ) ) = ( abs ` ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) ) |
12 |
|
neg1cn |
|- -u 1 e. CC |
13 |
|
prmdvdsfi |
|- ( A e. NN -> { p e. Prime | p || A } e. Fin ) |
14 |
|
hashcl |
|- ( { p e. Prime | p || A } e. Fin -> ( # ` { p e. Prime | p || A } ) e. NN0 ) |
15 |
13 14
|
syl |
|- ( A e. NN -> ( # ` { p e. Prime | p || A } ) e. NN0 ) |
16 |
|
absexp |
|- ( ( -u 1 e. CC /\ ( # ` { p e. Prime | p || A } ) e. NN0 ) -> ( abs ` ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) = ( ( abs ` -u 1 ) ^ ( # ` { p e. Prime | p || A } ) ) ) |
17 |
12 15 16
|
sylancr |
|- ( A e. NN -> ( abs ` ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) = ( ( abs ` -u 1 ) ^ ( # ` { p e. Prime | p || A } ) ) ) |
18 |
|
ax-1cn |
|- 1 e. CC |
19 |
18
|
absnegi |
|- ( abs ` -u 1 ) = ( abs ` 1 ) |
20 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
21 |
19 20
|
eqtri |
|- ( abs ` -u 1 ) = 1 |
22 |
21
|
oveq1i |
|- ( ( abs ` -u 1 ) ^ ( # ` { p e. Prime | p || A } ) ) = ( 1 ^ ( # ` { p e. Prime | p || A } ) ) |
23 |
15
|
nn0zd |
|- ( A e. NN -> ( # ` { p e. Prime | p || A } ) e. ZZ ) |
24 |
|
1exp |
|- ( ( # ` { p e. Prime | p || A } ) e. ZZ -> ( 1 ^ ( # ` { p e. Prime | p || A } ) ) = 1 ) |
25 |
23 24
|
syl |
|- ( A e. NN -> ( 1 ^ ( # ` { p e. Prime | p || A } ) ) = 1 ) |
26 |
22 25
|
syl5eq |
|- ( A e. NN -> ( ( abs ` -u 1 ) ^ ( # ` { p e. Prime | p || A } ) ) = 1 ) |
27 |
17 26
|
eqtrd |
|- ( A e. NN -> ( abs ` ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) = 1 ) |
28 |
27
|
adantr |
|- ( ( A e. NN /\ -. E. p e. Prime ( p ^ 2 ) || A ) -> ( abs ` ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) = 1 ) |
29 |
11 28
|
eqtrd |
|- ( ( A e. NN /\ -. E. p e. Prime ( p ^ 2 ) || A ) -> ( abs ` ( mmu ` A ) ) = 1 ) |
30 |
|
1le1 |
|- 1 <_ 1 |
31 |
29 30
|
eqbrtrdi |
|- ( ( A e. NN /\ -. E. p e. Prime ( p ^ 2 ) || A ) -> ( abs ` ( mmu ` A ) ) <_ 1 ) |
32 |
8 31
|
pm2.61dan |
|- ( A e. NN -> ( abs ` ( mmu ` A ) ) <_ 1 ) |