| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-1cn |
|- 1 e. CC |
| 2 |
|
mulsub |
|- ( ( ( A e. CC /\ 1 e. CC ) /\ ( B e. CC /\ 1 e. CC ) ) -> ( ( A - 1 ) x. ( B - 1 ) ) = ( ( ( A x. B ) + ( 1 x. 1 ) ) - ( ( A x. 1 ) + ( B x. 1 ) ) ) ) |
| 3 |
1 2
|
mpanr2 |
|- ( ( ( A e. CC /\ 1 e. CC ) /\ B e. CC ) -> ( ( A - 1 ) x. ( B - 1 ) ) = ( ( ( A x. B ) + ( 1 x. 1 ) ) - ( ( A x. 1 ) + ( B x. 1 ) ) ) ) |
| 4 |
1 3
|
mpanl2 |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A - 1 ) x. ( B - 1 ) ) = ( ( ( A x. B ) + ( 1 x. 1 ) ) - ( ( A x. 1 ) + ( B x. 1 ) ) ) ) |
| 5 |
1
|
mulridi |
|- ( 1 x. 1 ) = 1 |
| 6 |
5
|
oveq2i |
|- ( ( A x. B ) + ( 1 x. 1 ) ) = ( ( A x. B ) + 1 ) |
| 7 |
6
|
a1i |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) + ( 1 x. 1 ) ) = ( ( A x. B ) + 1 ) ) |
| 8 |
|
mulrid |
|- ( A e. CC -> ( A x. 1 ) = A ) |
| 9 |
|
mulrid |
|- ( B e. CC -> ( B x. 1 ) = B ) |
| 10 |
8 9
|
oveqan12d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A x. 1 ) + ( B x. 1 ) ) = ( A + B ) ) |
| 11 |
7 10
|
oveq12d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A x. B ) + ( 1 x. 1 ) ) - ( ( A x. 1 ) + ( B x. 1 ) ) ) = ( ( ( A x. B ) + 1 ) - ( A + B ) ) ) |
| 12 |
|
mulcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) e. CC ) |
| 13 |
|
addcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) |
| 14 |
|
addsub |
|- ( ( ( A x. B ) e. CC /\ 1 e. CC /\ ( A + B ) e. CC ) -> ( ( ( A x. B ) + 1 ) - ( A + B ) ) = ( ( ( A x. B ) - ( A + B ) ) + 1 ) ) |
| 15 |
1 14
|
mp3an2 |
|- ( ( ( A x. B ) e. CC /\ ( A + B ) e. CC ) -> ( ( ( A x. B ) + 1 ) - ( A + B ) ) = ( ( ( A x. B ) - ( A + B ) ) + 1 ) ) |
| 16 |
12 13 15
|
syl2anc |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A x. B ) + 1 ) - ( A + B ) ) = ( ( ( A x. B ) - ( A + B ) ) + 1 ) ) |
| 17 |
4 11 16
|
3eqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A - 1 ) x. ( B - 1 ) ) = ( ( ( A x. B ) - ( A + B ) ) + 1 ) ) |
| 18 |
17
|
eqeq1d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A - 1 ) x. ( B - 1 ) ) = 1 <-> ( ( ( A x. B ) - ( A + B ) ) + 1 ) = 1 ) ) |
| 19 |
12 13
|
subcld |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) - ( A + B ) ) e. CC ) |
| 20 |
|
0cn |
|- 0 e. CC |
| 21 |
|
addcan2 |
|- ( ( ( ( A x. B ) - ( A + B ) ) e. CC /\ 0 e. CC /\ 1 e. CC ) -> ( ( ( ( A x. B ) - ( A + B ) ) + 1 ) = ( 0 + 1 ) <-> ( ( A x. B ) - ( A + B ) ) = 0 ) ) |
| 22 |
20 1 21
|
mp3an23 |
|- ( ( ( A x. B ) - ( A + B ) ) e. CC -> ( ( ( ( A x. B ) - ( A + B ) ) + 1 ) = ( 0 + 1 ) <-> ( ( A x. B ) - ( A + B ) ) = 0 ) ) |
| 23 |
19 22
|
syl |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( ( A x. B ) - ( A + B ) ) + 1 ) = ( 0 + 1 ) <-> ( ( A x. B ) - ( A + B ) ) = 0 ) ) |
| 24 |
1
|
addlidi |
|- ( 0 + 1 ) = 1 |
| 25 |
24
|
eqeq2i |
|- ( ( ( ( A x. B ) - ( A + B ) ) + 1 ) = ( 0 + 1 ) <-> ( ( ( A x. B ) - ( A + B ) ) + 1 ) = 1 ) |
| 26 |
23 25
|
bitr3di |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A x. B ) - ( A + B ) ) = 0 <-> ( ( ( A x. B ) - ( A + B ) ) + 1 ) = 1 ) ) |
| 27 |
12 13
|
subeq0ad |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A x. B ) - ( A + B ) ) = 0 <-> ( A x. B ) = ( A + B ) ) ) |
| 28 |
18 26 27
|
3bitr2rd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) = ( A + B ) <-> ( ( A - 1 ) x. ( B - 1 ) ) = 1 ) ) |