| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xp1st |
|- ( A e. ( N. X. N. ) -> ( 1st ` A ) e. N. ) |
| 2 |
1
|
3ad2ant1 |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( 1st ` A ) e. N. ) |
| 3 |
|
xp1st |
|- ( C e. ( N. X. N. ) -> ( 1st ` C ) e. N. ) |
| 4 |
3
|
3ad2ant3 |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( 1st ` C ) e. N. ) |
| 5 |
|
mulclpi |
|- ( ( ( 1st ` A ) e. N. /\ ( 1st ` C ) e. N. ) -> ( ( 1st ` A ) .N ( 1st ` C ) ) e. N. ) |
| 6 |
2 4 5
|
syl2anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 1st ` A ) .N ( 1st ` C ) ) e. N. ) |
| 7 |
|
xp2nd |
|- ( A e. ( N. X. N. ) -> ( 2nd ` A ) e. N. ) |
| 8 |
7
|
3ad2ant1 |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( 2nd ` A ) e. N. ) |
| 9 |
|
xp2nd |
|- ( C e. ( N. X. N. ) -> ( 2nd ` C ) e. N. ) |
| 10 |
9
|
3ad2ant3 |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( 2nd ` C ) e. N. ) |
| 11 |
|
mulclpi |
|- ( ( ( 2nd ` A ) e. N. /\ ( 2nd ` C ) e. N. ) -> ( ( 2nd ` A ) .N ( 2nd ` C ) ) e. N. ) |
| 12 |
8 10 11
|
syl2anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 2nd ` A ) .N ( 2nd ` C ) ) e. N. ) |
| 13 |
|
xp1st |
|- ( B e. ( N. X. N. ) -> ( 1st ` B ) e. N. ) |
| 14 |
13
|
3ad2ant2 |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( 1st ` B ) e. N. ) |
| 15 |
|
mulclpi |
|- ( ( ( 1st ` B ) e. N. /\ ( 1st ` C ) e. N. ) -> ( ( 1st ` B ) .N ( 1st ` C ) ) e. N. ) |
| 16 |
14 4 15
|
syl2anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 1st ` B ) .N ( 1st ` C ) ) e. N. ) |
| 17 |
|
xp2nd |
|- ( B e. ( N. X. N. ) -> ( 2nd ` B ) e. N. ) |
| 18 |
17
|
3ad2ant2 |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( 2nd ` B ) e. N. ) |
| 19 |
|
mulclpi |
|- ( ( ( 2nd ` B ) e. N. /\ ( 2nd ` C ) e. N. ) -> ( ( 2nd ` B ) .N ( 2nd ` C ) ) e. N. ) |
| 20 |
18 10 19
|
syl2anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 2nd ` B ) .N ( 2nd ` C ) ) e. N. ) |
| 21 |
|
enqbreq |
|- ( ( ( ( ( 1st ` A ) .N ( 1st ` C ) ) e. N. /\ ( ( 2nd ` A ) .N ( 2nd ` C ) ) e. N. ) /\ ( ( ( 1st ` B ) .N ( 1st ` C ) ) e. N. /\ ( ( 2nd ` B ) .N ( 2nd ` C ) ) e. N. ) ) -> ( <. ( ( 1st ` A ) .N ( 1st ` C ) ) , ( ( 2nd ` A ) .N ( 2nd ` C ) ) >. ~Q <. ( ( 1st ` B ) .N ( 1st ` C ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. <-> ( ( ( 1st ` A ) .N ( 1st ` C ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 1st ` C ) ) ) ) ) |
| 22 |
6 12 16 20 21
|
syl22anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( <. ( ( 1st ` A ) .N ( 1st ` C ) ) , ( ( 2nd ` A ) .N ( 2nd ` C ) ) >. ~Q <. ( ( 1st ` B ) .N ( 1st ` C ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. <-> ( ( ( 1st ` A ) .N ( 1st ` C ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 1st ` C ) ) ) ) ) |
| 23 |
|
mulpipq2 |
|- ( ( A e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( A .pQ C ) = <. ( ( 1st ` A ) .N ( 1st ` C ) ) , ( ( 2nd ` A ) .N ( 2nd ` C ) ) >. ) |
| 24 |
23
|
3adant2 |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( A .pQ C ) = <. ( ( 1st ` A ) .N ( 1st ` C ) ) , ( ( 2nd ` A ) .N ( 2nd ` C ) ) >. ) |
| 25 |
|
mulpipq2 |
|- ( ( B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( B .pQ C ) = <. ( ( 1st ` B ) .N ( 1st ` C ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) |
| 26 |
25
|
3adant1 |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( B .pQ C ) = <. ( ( 1st ` B ) .N ( 1st ` C ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) |
| 27 |
24 26
|
breq12d |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( A .pQ C ) ~Q ( B .pQ C ) <-> <. ( ( 1st ` A ) .N ( 1st ` C ) ) , ( ( 2nd ` A ) .N ( 2nd ` C ) ) >. ~Q <. ( ( 1st ` B ) .N ( 1st ` C ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) ) |
| 28 |
|
enqbreq2 |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( A ~Q B <-> ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) |
| 29 |
28
|
3adant3 |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( A ~Q B <-> ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) |
| 30 |
|
mulclpi |
|- ( ( ( 1st ` C ) e. N. /\ ( 2nd ` C ) e. N. ) -> ( ( 1st ` C ) .N ( 2nd ` C ) ) e. N. ) |
| 31 |
4 10 30
|
syl2anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 1st ` C ) .N ( 2nd ` C ) ) e. N. ) |
| 32 |
|
mulclpi |
|- ( ( ( 1st ` A ) e. N. /\ ( 2nd ` B ) e. N. ) -> ( ( 1st ` A ) .N ( 2nd ` B ) ) e. N. ) |
| 33 |
2 18 32
|
syl2anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 1st ` A ) .N ( 2nd ` B ) ) e. N. ) |
| 34 |
|
mulcanpi |
|- ( ( ( ( 1st ` C ) .N ( 2nd ` C ) ) e. N. /\ ( ( 1st ` A ) .N ( 2nd ` B ) ) e. N. ) -> ( ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) <-> ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) |
| 35 |
31 33 34
|
syl2anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) <-> ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) |
| 36 |
|
mulcompi |
|- ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 1st ` A ) .N ( 2nd ` B ) ) .N ( ( 1st ` C ) .N ( 2nd ` C ) ) ) |
| 37 |
|
fvex |
|- ( 1st ` A ) e. _V |
| 38 |
|
fvex |
|- ( 2nd ` B ) e. _V |
| 39 |
|
fvex |
|- ( 1st ` C ) e. _V |
| 40 |
|
mulcompi |
|- ( x .N y ) = ( y .N x ) |
| 41 |
|
mulasspi |
|- ( ( x .N y ) .N z ) = ( x .N ( y .N z ) ) |
| 42 |
|
fvex |
|- ( 2nd ` C ) e. _V |
| 43 |
37 38 39 40 41 42
|
caov4 |
|- ( ( ( 1st ` A ) .N ( 2nd ` B ) ) .N ( ( 1st ` C ) .N ( 2nd ` C ) ) ) = ( ( ( 1st ` A ) .N ( 1st ` C ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) |
| 44 |
36 43
|
eqtri |
|- ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 1st ` A ) .N ( 1st ` C ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) |
| 45 |
|
mulcompi |
|- ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) = ( ( ( 1st ` B ) .N ( 2nd ` A ) ) .N ( ( 1st ` C ) .N ( 2nd ` C ) ) ) |
| 46 |
|
fvex |
|- ( 1st ` B ) e. _V |
| 47 |
|
fvex |
|- ( 2nd ` A ) e. _V |
| 48 |
46 47 39 40 41 42
|
caov4 |
|- ( ( ( 1st ` B ) .N ( 2nd ` A ) ) .N ( ( 1st ` C ) .N ( 2nd ` C ) ) ) = ( ( ( 1st ` B ) .N ( 1st ` C ) ) .N ( ( 2nd ` A ) .N ( 2nd ` C ) ) ) |
| 49 |
|
mulcompi |
|- ( ( ( 1st ` B ) .N ( 1st ` C ) ) .N ( ( 2nd ` A ) .N ( 2nd ` C ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 1st ` C ) ) ) |
| 50 |
45 48 49
|
3eqtri |
|- ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 1st ` C ) ) ) |
| 51 |
44 50
|
eqeq12i |
|- ( ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) <-> ( ( ( 1st ` A ) .N ( 1st ` C ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 1st ` C ) ) ) ) |
| 52 |
51
|
a1i |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) <-> ( ( ( 1st ` A ) .N ( 1st ` C ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 1st ` C ) ) ) ) ) |
| 53 |
29 35 52
|
3bitr2d |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( A ~Q B <-> ( ( ( 1st ` A ) .N ( 1st ` C ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 1st ` C ) ) ) ) ) |
| 54 |
22 27 53
|
3bitr4rd |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( A ~Q B <-> ( A .pQ C ) ~Q ( B .pQ C ) ) ) |