| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( j = 0 -> ( ( A x. B ) ^ j ) = ( ( A x. B ) ^ 0 ) ) |
| 2 |
|
oveq2 |
|- ( j = 0 -> ( A ^ j ) = ( A ^ 0 ) ) |
| 3 |
|
oveq2 |
|- ( j = 0 -> ( B ^ j ) = ( B ^ 0 ) ) |
| 4 |
2 3
|
oveq12d |
|- ( j = 0 -> ( ( A ^ j ) x. ( B ^ j ) ) = ( ( A ^ 0 ) x. ( B ^ 0 ) ) ) |
| 5 |
1 4
|
eqeq12d |
|- ( j = 0 -> ( ( ( A x. B ) ^ j ) = ( ( A ^ j ) x. ( B ^ j ) ) <-> ( ( A x. B ) ^ 0 ) = ( ( A ^ 0 ) x. ( B ^ 0 ) ) ) ) |
| 6 |
5
|
imbi2d |
|- ( j = 0 -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ j ) = ( ( A ^ j ) x. ( B ^ j ) ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ 0 ) = ( ( A ^ 0 ) x. ( B ^ 0 ) ) ) ) ) |
| 7 |
|
oveq2 |
|- ( j = k -> ( ( A x. B ) ^ j ) = ( ( A x. B ) ^ k ) ) |
| 8 |
|
oveq2 |
|- ( j = k -> ( A ^ j ) = ( A ^ k ) ) |
| 9 |
|
oveq2 |
|- ( j = k -> ( B ^ j ) = ( B ^ k ) ) |
| 10 |
8 9
|
oveq12d |
|- ( j = k -> ( ( A ^ j ) x. ( B ^ j ) ) = ( ( A ^ k ) x. ( B ^ k ) ) ) |
| 11 |
7 10
|
eqeq12d |
|- ( j = k -> ( ( ( A x. B ) ^ j ) = ( ( A ^ j ) x. ( B ^ j ) ) <-> ( ( A x. B ) ^ k ) = ( ( A ^ k ) x. ( B ^ k ) ) ) ) |
| 12 |
11
|
imbi2d |
|- ( j = k -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ j ) = ( ( A ^ j ) x. ( B ^ j ) ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ k ) = ( ( A ^ k ) x. ( B ^ k ) ) ) ) ) |
| 13 |
|
oveq2 |
|- ( j = ( k + 1 ) -> ( ( A x. B ) ^ j ) = ( ( A x. B ) ^ ( k + 1 ) ) ) |
| 14 |
|
oveq2 |
|- ( j = ( k + 1 ) -> ( A ^ j ) = ( A ^ ( k + 1 ) ) ) |
| 15 |
|
oveq2 |
|- ( j = ( k + 1 ) -> ( B ^ j ) = ( B ^ ( k + 1 ) ) ) |
| 16 |
14 15
|
oveq12d |
|- ( j = ( k + 1 ) -> ( ( A ^ j ) x. ( B ^ j ) ) = ( ( A ^ ( k + 1 ) ) x. ( B ^ ( k + 1 ) ) ) ) |
| 17 |
13 16
|
eqeq12d |
|- ( j = ( k + 1 ) -> ( ( ( A x. B ) ^ j ) = ( ( A ^ j ) x. ( B ^ j ) ) <-> ( ( A x. B ) ^ ( k + 1 ) ) = ( ( A ^ ( k + 1 ) ) x. ( B ^ ( k + 1 ) ) ) ) ) |
| 18 |
17
|
imbi2d |
|- ( j = ( k + 1 ) -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ j ) = ( ( A ^ j ) x. ( B ^ j ) ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ ( k + 1 ) ) = ( ( A ^ ( k + 1 ) ) x. ( B ^ ( k + 1 ) ) ) ) ) ) |
| 19 |
|
oveq2 |
|- ( j = N -> ( ( A x. B ) ^ j ) = ( ( A x. B ) ^ N ) ) |
| 20 |
|
oveq2 |
|- ( j = N -> ( A ^ j ) = ( A ^ N ) ) |
| 21 |
|
oveq2 |
|- ( j = N -> ( B ^ j ) = ( B ^ N ) ) |
| 22 |
20 21
|
oveq12d |
|- ( j = N -> ( ( A ^ j ) x. ( B ^ j ) ) = ( ( A ^ N ) x. ( B ^ N ) ) ) |
| 23 |
19 22
|
eqeq12d |
|- ( j = N -> ( ( ( A x. B ) ^ j ) = ( ( A ^ j ) x. ( B ^ j ) ) <-> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) ) |
| 24 |
23
|
imbi2d |
|- ( j = N -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ j ) = ( ( A ^ j ) x. ( B ^ j ) ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) ) ) |
| 25 |
|
mulcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) e. CC ) |
| 26 |
|
exp0 |
|- ( ( A x. B ) e. CC -> ( ( A x. B ) ^ 0 ) = 1 ) |
| 27 |
25 26
|
syl |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ 0 ) = 1 ) |
| 28 |
|
exp0 |
|- ( A e. CC -> ( A ^ 0 ) = 1 ) |
| 29 |
|
exp0 |
|- ( B e. CC -> ( B ^ 0 ) = 1 ) |
| 30 |
28 29
|
oveqan12d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 0 ) x. ( B ^ 0 ) ) = ( 1 x. 1 ) ) |
| 31 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
| 32 |
30 31
|
eqtrdi |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 0 ) x. ( B ^ 0 ) ) = 1 ) |
| 33 |
27 32
|
eqtr4d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ 0 ) = ( ( A ^ 0 ) x. ( B ^ 0 ) ) ) |
| 34 |
|
expp1 |
|- ( ( ( A x. B ) e. CC /\ k e. NN0 ) -> ( ( A x. B ) ^ ( k + 1 ) ) = ( ( ( A x. B ) ^ k ) x. ( A x. B ) ) ) |
| 35 |
25 34
|
sylan |
|- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( ( A x. B ) ^ ( k + 1 ) ) = ( ( ( A x. B ) ^ k ) x. ( A x. B ) ) ) |
| 36 |
35
|
adantr |
|- ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ ( ( A x. B ) ^ k ) = ( ( A ^ k ) x. ( B ^ k ) ) ) -> ( ( A x. B ) ^ ( k + 1 ) ) = ( ( ( A x. B ) ^ k ) x. ( A x. B ) ) ) |
| 37 |
|
oveq1 |
|- ( ( ( A x. B ) ^ k ) = ( ( A ^ k ) x. ( B ^ k ) ) -> ( ( ( A x. B ) ^ k ) x. ( A x. B ) ) = ( ( ( A ^ k ) x. ( B ^ k ) ) x. ( A x. B ) ) ) |
| 38 |
|
expcl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
| 39 |
|
expcl |
|- ( ( B e. CC /\ k e. NN0 ) -> ( B ^ k ) e. CC ) |
| 40 |
38 39
|
anim12i |
|- ( ( ( A e. CC /\ k e. NN0 ) /\ ( B e. CC /\ k e. NN0 ) ) -> ( ( A ^ k ) e. CC /\ ( B ^ k ) e. CC ) ) |
| 41 |
40
|
anandirs |
|- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( ( A ^ k ) e. CC /\ ( B ^ k ) e. CC ) ) |
| 42 |
|
simpl |
|- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( A e. CC /\ B e. CC ) ) |
| 43 |
|
mul4 |
|- ( ( ( ( A ^ k ) e. CC /\ ( B ^ k ) e. CC ) /\ ( A e. CC /\ B e. CC ) ) -> ( ( ( A ^ k ) x. ( B ^ k ) ) x. ( A x. B ) ) = ( ( ( A ^ k ) x. A ) x. ( ( B ^ k ) x. B ) ) ) |
| 44 |
41 42 43
|
syl2anc |
|- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( ( ( A ^ k ) x. ( B ^ k ) ) x. ( A x. B ) ) = ( ( ( A ^ k ) x. A ) x. ( ( B ^ k ) x. B ) ) ) |
| 45 |
|
expp1 |
|- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ ( k + 1 ) ) = ( ( A ^ k ) x. A ) ) |
| 46 |
45
|
adantlr |
|- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( A ^ ( k + 1 ) ) = ( ( A ^ k ) x. A ) ) |
| 47 |
|
expp1 |
|- ( ( B e. CC /\ k e. NN0 ) -> ( B ^ ( k + 1 ) ) = ( ( B ^ k ) x. B ) ) |
| 48 |
47
|
adantll |
|- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( B ^ ( k + 1 ) ) = ( ( B ^ k ) x. B ) ) |
| 49 |
46 48
|
oveq12d |
|- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( ( A ^ ( k + 1 ) ) x. ( B ^ ( k + 1 ) ) ) = ( ( ( A ^ k ) x. A ) x. ( ( B ^ k ) x. B ) ) ) |
| 50 |
44 49
|
eqtr4d |
|- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( ( ( A ^ k ) x. ( B ^ k ) ) x. ( A x. B ) ) = ( ( A ^ ( k + 1 ) ) x. ( B ^ ( k + 1 ) ) ) ) |
| 51 |
37 50
|
sylan9eqr |
|- ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ ( ( A x. B ) ^ k ) = ( ( A ^ k ) x. ( B ^ k ) ) ) -> ( ( ( A x. B ) ^ k ) x. ( A x. B ) ) = ( ( A ^ ( k + 1 ) ) x. ( B ^ ( k + 1 ) ) ) ) |
| 52 |
36 51
|
eqtrd |
|- ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ ( ( A x. B ) ^ k ) = ( ( A ^ k ) x. ( B ^ k ) ) ) -> ( ( A x. B ) ^ ( k + 1 ) ) = ( ( A ^ ( k + 1 ) ) x. ( B ^ ( k + 1 ) ) ) ) |
| 53 |
52
|
exp31 |
|- ( ( A e. CC /\ B e. CC ) -> ( k e. NN0 -> ( ( ( A x. B ) ^ k ) = ( ( A ^ k ) x. ( B ^ k ) ) -> ( ( A x. B ) ^ ( k + 1 ) ) = ( ( A ^ ( k + 1 ) ) x. ( B ^ ( k + 1 ) ) ) ) ) ) |
| 54 |
53
|
com12 |
|- ( k e. NN0 -> ( ( A e. CC /\ B e. CC ) -> ( ( ( A x. B ) ^ k ) = ( ( A ^ k ) x. ( B ^ k ) ) -> ( ( A x. B ) ^ ( k + 1 ) ) = ( ( A ^ ( k + 1 ) ) x. ( B ^ ( k + 1 ) ) ) ) ) ) |
| 55 |
54
|
a2d |
|- ( k e. NN0 -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ k ) = ( ( A ^ k ) x. ( B ^ k ) ) ) -> ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ ( k + 1 ) ) = ( ( A ^ ( k + 1 ) ) x. ( B ^ ( k + 1 ) ) ) ) ) ) |
| 56 |
6 12 18 24 33 55
|
nn0ind |
|- ( N e. NN0 -> ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) ) |
| 57 |
56
|
expdcom |
|- ( A e. CC -> ( B e. CC -> ( N e. NN0 -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) ) ) |
| 58 |
57
|
3imp |
|- ( ( A e. CC /\ B e. CC /\ N e. NN0 ) -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) |