Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( j = 0 -> ( ( A x. B ) ^ j ) = ( ( A x. B ) ^ 0 ) ) |
2 |
|
oveq2 |
|- ( j = 0 -> ( A ^ j ) = ( A ^ 0 ) ) |
3 |
|
oveq2 |
|- ( j = 0 -> ( B ^ j ) = ( B ^ 0 ) ) |
4 |
2 3
|
oveq12d |
|- ( j = 0 -> ( ( A ^ j ) x. ( B ^ j ) ) = ( ( A ^ 0 ) x. ( B ^ 0 ) ) ) |
5 |
1 4
|
eqeq12d |
|- ( j = 0 -> ( ( ( A x. B ) ^ j ) = ( ( A ^ j ) x. ( B ^ j ) ) <-> ( ( A x. B ) ^ 0 ) = ( ( A ^ 0 ) x. ( B ^ 0 ) ) ) ) |
6 |
5
|
imbi2d |
|- ( j = 0 -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ j ) = ( ( A ^ j ) x. ( B ^ j ) ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ 0 ) = ( ( A ^ 0 ) x. ( B ^ 0 ) ) ) ) ) |
7 |
|
oveq2 |
|- ( j = k -> ( ( A x. B ) ^ j ) = ( ( A x. B ) ^ k ) ) |
8 |
|
oveq2 |
|- ( j = k -> ( A ^ j ) = ( A ^ k ) ) |
9 |
|
oveq2 |
|- ( j = k -> ( B ^ j ) = ( B ^ k ) ) |
10 |
8 9
|
oveq12d |
|- ( j = k -> ( ( A ^ j ) x. ( B ^ j ) ) = ( ( A ^ k ) x. ( B ^ k ) ) ) |
11 |
7 10
|
eqeq12d |
|- ( j = k -> ( ( ( A x. B ) ^ j ) = ( ( A ^ j ) x. ( B ^ j ) ) <-> ( ( A x. B ) ^ k ) = ( ( A ^ k ) x. ( B ^ k ) ) ) ) |
12 |
11
|
imbi2d |
|- ( j = k -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ j ) = ( ( A ^ j ) x. ( B ^ j ) ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ k ) = ( ( A ^ k ) x. ( B ^ k ) ) ) ) ) |
13 |
|
oveq2 |
|- ( j = ( k + 1 ) -> ( ( A x. B ) ^ j ) = ( ( A x. B ) ^ ( k + 1 ) ) ) |
14 |
|
oveq2 |
|- ( j = ( k + 1 ) -> ( A ^ j ) = ( A ^ ( k + 1 ) ) ) |
15 |
|
oveq2 |
|- ( j = ( k + 1 ) -> ( B ^ j ) = ( B ^ ( k + 1 ) ) ) |
16 |
14 15
|
oveq12d |
|- ( j = ( k + 1 ) -> ( ( A ^ j ) x. ( B ^ j ) ) = ( ( A ^ ( k + 1 ) ) x. ( B ^ ( k + 1 ) ) ) ) |
17 |
13 16
|
eqeq12d |
|- ( j = ( k + 1 ) -> ( ( ( A x. B ) ^ j ) = ( ( A ^ j ) x. ( B ^ j ) ) <-> ( ( A x. B ) ^ ( k + 1 ) ) = ( ( A ^ ( k + 1 ) ) x. ( B ^ ( k + 1 ) ) ) ) ) |
18 |
17
|
imbi2d |
|- ( j = ( k + 1 ) -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ j ) = ( ( A ^ j ) x. ( B ^ j ) ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ ( k + 1 ) ) = ( ( A ^ ( k + 1 ) ) x. ( B ^ ( k + 1 ) ) ) ) ) ) |
19 |
|
oveq2 |
|- ( j = N -> ( ( A x. B ) ^ j ) = ( ( A x. B ) ^ N ) ) |
20 |
|
oveq2 |
|- ( j = N -> ( A ^ j ) = ( A ^ N ) ) |
21 |
|
oveq2 |
|- ( j = N -> ( B ^ j ) = ( B ^ N ) ) |
22 |
20 21
|
oveq12d |
|- ( j = N -> ( ( A ^ j ) x. ( B ^ j ) ) = ( ( A ^ N ) x. ( B ^ N ) ) ) |
23 |
19 22
|
eqeq12d |
|- ( j = N -> ( ( ( A x. B ) ^ j ) = ( ( A ^ j ) x. ( B ^ j ) ) <-> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) ) |
24 |
23
|
imbi2d |
|- ( j = N -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ j ) = ( ( A ^ j ) x. ( B ^ j ) ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) ) ) |
25 |
|
mulcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) e. CC ) |
26 |
|
exp0 |
|- ( ( A x. B ) e. CC -> ( ( A x. B ) ^ 0 ) = 1 ) |
27 |
25 26
|
syl |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ 0 ) = 1 ) |
28 |
|
exp0 |
|- ( A e. CC -> ( A ^ 0 ) = 1 ) |
29 |
|
exp0 |
|- ( B e. CC -> ( B ^ 0 ) = 1 ) |
30 |
28 29
|
oveqan12d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 0 ) x. ( B ^ 0 ) ) = ( 1 x. 1 ) ) |
31 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
32 |
30 31
|
eqtrdi |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 0 ) x. ( B ^ 0 ) ) = 1 ) |
33 |
27 32
|
eqtr4d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ 0 ) = ( ( A ^ 0 ) x. ( B ^ 0 ) ) ) |
34 |
|
expp1 |
|- ( ( ( A x. B ) e. CC /\ k e. NN0 ) -> ( ( A x. B ) ^ ( k + 1 ) ) = ( ( ( A x. B ) ^ k ) x. ( A x. B ) ) ) |
35 |
25 34
|
sylan |
|- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( ( A x. B ) ^ ( k + 1 ) ) = ( ( ( A x. B ) ^ k ) x. ( A x. B ) ) ) |
36 |
35
|
adantr |
|- ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ ( ( A x. B ) ^ k ) = ( ( A ^ k ) x. ( B ^ k ) ) ) -> ( ( A x. B ) ^ ( k + 1 ) ) = ( ( ( A x. B ) ^ k ) x. ( A x. B ) ) ) |
37 |
|
oveq1 |
|- ( ( ( A x. B ) ^ k ) = ( ( A ^ k ) x. ( B ^ k ) ) -> ( ( ( A x. B ) ^ k ) x. ( A x. B ) ) = ( ( ( A ^ k ) x. ( B ^ k ) ) x. ( A x. B ) ) ) |
38 |
|
expcl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
39 |
|
expcl |
|- ( ( B e. CC /\ k e. NN0 ) -> ( B ^ k ) e. CC ) |
40 |
38 39
|
anim12i |
|- ( ( ( A e. CC /\ k e. NN0 ) /\ ( B e. CC /\ k e. NN0 ) ) -> ( ( A ^ k ) e. CC /\ ( B ^ k ) e. CC ) ) |
41 |
40
|
anandirs |
|- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( ( A ^ k ) e. CC /\ ( B ^ k ) e. CC ) ) |
42 |
|
simpl |
|- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( A e. CC /\ B e. CC ) ) |
43 |
|
mul4 |
|- ( ( ( ( A ^ k ) e. CC /\ ( B ^ k ) e. CC ) /\ ( A e. CC /\ B e. CC ) ) -> ( ( ( A ^ k ) x. ( B ^ k ) ) x. ( A x. B ) ) = ( ( ( A ^ k ) x. A ) x. ( ( B ^ k ) x. B ) ) ) |
44 |
41 42 43
|
syl2anc |
|- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( ( ( A ^ k ) x. ( B ^ k ) ) x. ( A x. B ) ) = ( ( ( A ^ k ) x. A ) x. ( ( B ^ k ) x. B ) ) ) |
45 |
|
expp1 |
|- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ ( k + 1 ) ) = ( ( A ^ k ) x. A ) ) |
46 |
45
|
adantlr |
|- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( A ^ ( k + 1 ) ) = ( ( A ^ k ) x. A ) ) |
47 |
|
expp1 |
|- ( ( B e. CC /\ k e. NN0 ) -> ( B ^ ( k + 1 ) ) = ( ( B ^ k ) x. B ) ) |
48 |
47
|
adantll |
|- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( B ^ ( k + 1 ) ) = ( ( B ^ k ) x. B ) ) |
49 |
46 48
|
oveq12d |
|- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( ( A ^ ( k + 1 ) ) x. ( B ^ ( k + 1 ) ) ) = ( ( ( A ^ k ) x. A ) x. ( ( B ^ k ) x. B ) ) ) |
50 |
44 49
|
eqtr4d |
|- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( ( ( A ^ k ) x. ( B ^ k ) ) x. ( A x. B ) ) = ( ( A ^ ( k + 1 ) ) x. ( B ^ ( k + 1 ) ) ) ) |
51 |
37 50
|
sylan9eqr |
|- ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ ( ( A x. B ) ^ k ) = ( ( A ^ k ) x. ( B ^ k ) ) ) -> ( ( ( A x. B ) ^ k ) x. ( A x. B ) ) = ( ( A ^ ( k + 1 ) ) x. ( B ^ ( k + 1 ) ) ) ) |
52 |
36 51
|
eqtrd |
|- ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ ( ( A x. B ) ^ k ) = ( ( A ^ k ) x. ( B ^ k ) ) ) -> ( ( A x. B ) ^ ( k + 1 ) ) = ( ( A ^ ( k + 1 ) ) x. ( B ^ ( k + 1 ) ) ) ) |
53 |
52
|
exp31 |
|- ( ( A e. CC /\ B e. CC ) -> ( k e. NN0 -> ( ( ( A x. B ) ^ k ) = ( ( A ^ k ) x. ( B ^ k ) ) -> ( ( A x. B ) ^ ( k + 1 ) ) = ( ( A ^ ( k + 1 ) ) x. ( B ^ ( k + 1 ) ) ) ) ) ) |
54 |
53
|
com12 |
|- ( k e. NN0 -> ( ( A e. CC /\ B e. CC ) -> ( ( ( A x. B ) ^ k ) = ( ( A ^ k ) x. ( B ^ k ) ) -> ( ( A x. B ) ^ ( k + 1 ) ) = ( ( A ^ ( k + 1 ) ) x. ( B ^ ( k + 1 ) ) ) ) ) ) |
55 |
54
|
a2d |
|- ( k e. NN0 -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ k ) = ( ( A ^ k ) x. ( B ^ k ) ) ) -> ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ ( k + 1 ) ) = ( ( A ^ ( k + 1 ) ) x. ( B ^ ( k + 1 ) ) ) ) ) ) |
56 |
6 12 18 24 33 55
|
nn0ind |
|- ( N e. NN0 -> ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) ) |
57 |
56
|
expdcom |
|- ( A e. CC -> ( B e. CC -> ( N e. NN0 -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) ) ) |
58 |
57
|
3imp |
|- ( ( A e. CC /\ B e. CC /\ N e. NN0 ) -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) |