Metamath Proof Explorer


Theorem mulexpd

Description: Positive integer exponentiation of a product. Proposition 10-4.2(c) of Gleason p. 135, restricted to nonnegative integer exponents. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1
|- ( ph -> A e. CC )
mulexpd.2
|- ( ph -> B e. CC )
mulexpd.3
|- ( ph -> N e. NN0 )
Assertion mulexpd
|- ( ph -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) )

Proof

Step Hyp Ref Expression
1 expcld.1
 |-  ( ph -> A e. CC )
2 mulexpd.2
 |-  ( ph -> B e. CC )
3 mulexpd.3
 |-  ( ph -> N e. NN0 )
4 mulexp
 |-  ( ( A e. CC /\ B e. CC /\ N e. NN0 ) -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) )
5 1 2 3 4 syl3anc
 |-  ( ph -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) )