| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elznn0nn |
|- ( N e. ZZ <-> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) |
| 2 |
|
simpl |
|- ( ( A e. CC /\ A =/= 0 ) -> A e. CC ) |
| 3 |
|
simpl |
|- ( ( B e. CC /\ B =/= 0 ) -> B e. CC ) |
| 4 |
2 3
|
anim12i |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( A e. CC /\ B e. CC ) ) |
| 5 |
|
mulexp |
|- ( ( A e. CC /\ B e. CC /\ N e. NN0 ) -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) |
| 6 |
5
|
3expa |
|- ( ( ( A e. CC /\ B e. CC ) /\ N e. NN0 ) -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) |
| 7 |
4 6
|
sylan |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ N e. NN0 ) -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) |
| 8 |
|
simplll |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> A e. CC ) |
| 9 |
|
simplrl |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> B e. CC ) |
| 10 |
8 9
|
mulcld |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A x. B ) e. CC ) |
| 11 |
|
recn |
|- ( N e. RR -> N e. CC ) |
| 12 |
11
|
ad2antrl |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> N e. CC ) |
| 13 |
|
nnnn0 |
|- ( -u N e. NN -> -u N e. NN0 ) |
| 14 |
13
|
ad2antll |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u N e. NN0 ) |
| 15 |
|
expneg2 |
|- ( ( ( A x. B ) e. CC /\ N e. CC /\ -u N e. NN0 ) -> ( ( A x. B ) ^ N ) = ( 1 / ( ( A x. B ) ^ -u N ) ) ) |
| 16 |
10 12 14 15
|
syl3anc |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( A x. B ) ^ N ) = ( 1 / ( ( A x. B ) ^ -u N ) ) ) |
| 17 |
|
expneg2 |
|- ( ( A e. CC /\ N e. CC /\ -u N e. NN0 ) -> ( A ^ N ) = ( 1 / ( A ^ -u N ) ) ) |
| 18 |
8 12 14 17
|
syl3anc |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ N ) = ( 1 / ( A ^ -u N ) ) ) |
| 19 |
|
expneg2 |
|- ( ( B e. CC /\ N e. CC /\ -u N e. NN0 ) -> ( B ^ N ) = ( 1 / ( B ^ -u N ) ) ) |
| 20 |
9 12 14 19
|
syl3anc |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( B ^ N ) = ( 1 / ( B ^ -u N ) ) ) |
| 21 |
18 20
|
oveq12d |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( A ^ N ) x. ( B ^ N ) ) = ( ( 1 / ( A ^ -u N ) ) x. ( 1 / ( B ^ -u N ) ) ) ) |
| 22 |
|
mulexp |
|- ( ( A e. CC /\ B e. CC /\ -u N e. NN0 ) -> ( ( A x. B ) ^ -u N ) = ( ( A ^ -u N ) x. ( B ^ -u N ) ) ) |
| 23 |
8 9 14 22
|
syl3anc |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( A x. B ) ^ -u N ) = ( ( A ^ -u N ) x. ( B ^ -u N ) ) ) |
| 24 |
23
|
oveq2d |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( 1 / ( ( A x. B ) ^ -u N ) ) = ( 1 / ( ( A ^ -u N ) x. ( B ^ -u N ) ) ) ) |
| 25 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
| 26 |
25
|
oveq1i |
|- ( ( 1 x. 1 ) / ( ( A ^ -u N ) x. ( B ^ -u N ) ) ) = ( 1 / ( ( A ^ -u N ) x. ( B ^ -u N ) ) ) |
| 27 |
24 26
|
eqtr4di |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( 1 / ( ( A x. B ) ^ -u N ) ) = ( ( 1 x. 1 ) / ( ( A ^ -u N ) x. ( B ^ -u N ) ) ) ) |
| 28 |
|
expcl |
|- ( ( A e. CC /\ -u N e. NN0 ) -> ( A ^ -u N ) e. CC ) |
| 29 |
8 14 28
|
syl2anc |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ -u N ) e. CC ) |
| 30 |
|
simpllr |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> A =/= 0 ) |
| 31 |
|
nnz |
|- ( -u N e. NN -> -u N e. ZZ ) |
| 32 |
31
|
ad2antll |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u N e. ZZ ) |
| 33 |
|
expne0i |
|- ( ( A e. CC /\ A =/= 0 /\ -u N e. ZZ ) -> ( A ^ -u N ) =/= 0 ) |
| 34 |
8 30 32 33
|
syl3anc |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ -u N ) =/= 0 ) |
| 35 |
|
expcl |
|- ( ( B e. CC /\ -u N e. NN0 ) -> ( B ^ -u N ) e. CC ) |
| 36 |
9 14 35
|
syl2anc |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( B ^ -u N ) e. CC ) |
| 37 |
|
simplrr |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> B =/= 0 ) |
| 38 |
|
expne0i |
|- ( ( B e. CC /\ B =/= 0 /\ -u N e. ZZ ) -> ( B ^ -u N ) =/= 0 ) |
| 39 |
9 37 32 38
|
syl3anc |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( B ^ -u N ) =/= 0 ) |
| 40 |
|
ax-1cn |
|- 1 e. CC |
| 41 |
|
divmuldiv |
|- ( ( ( 1 e. CC /\ 1 e. CC ) /\ ( ( ( A ^ -u N ) e. CC /\ ( A ^ -u N ) =/= 0 ) /\ ( ( B ^ -u N ) e. CC /\ ( B ^ -u N ) =/= 0 ) ) ) -> ( ( 1 / ( A ^ -u N ) ) x. ( 1 / ( B ^ -u N ) ) ) = ( ( 1 x. 1 ) / ( ( A ^ -u N ) x. ( B ^ -u N ) ) ) ) |
| 42 |
40 40 41
|
mpanl12 |
|- ( ( ( ( A ^ -u N ) e. CC /\ ( A ^ -u N ) =/= 0 ) /\ ( ( B ^ -u N ) e. CC /\ ( B ^ -u N ) =/= 0 ) ) -> ( ( 1 / ( A ^ -u N ) ) x. ( 1 / ( B ^ -u N ) ) ) = ( ( 1 x. 1 ) / ( ( A ^ -u N ) x. ( B ^ -u N ) ) ) ) |
| 43 |
29 34 36 39 42
|
syl22anc |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( 1 / ( A ^ -u N ) ) x. ( 1 / ( B ^ -u N ) ) ) = ( ( 1 x. 1 ) / ( ( A ^ -u N ) x. ( B ^ -u N ) ) ) ) |
| 44 |
27 43
|
eqtr4d |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( 1 / ( ( A x. B ) ^ -u N ) ) = ( ( 1 / ( A ^ -u N ) ) x. ( 1 / ( B ^ -u N ) ) ) ) |
| 45 |
21 44
|
eqtr4d |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( A ^ N ) x. ( B ^ N ) ) = ( 1 / ( ( A x. B ) ^ -u N ) ) ) |
| 46 |
16 45
|
eqtr4d |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) |
| 47 |
7 46
|
jaodan |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) |
| 48 |
1 47
|
sylan2b |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ N e. ZZ ) -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) |
| 49 |
48
|
3impa |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ N e. ZZ ) -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) |