Step |
Hyp |
Ref |
Expression |
1 |
|
elznn0nn |
|- ( N e. ZZ <-> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) |
2 |
|
simpl |
|- ( ( A e. CC /\ A =/= 0 ) -> A e. CC ) |
3 |
|
simpl |
|- ( ( B e. CC /\ B =/= 0 ) -> B e. CC ) |
4 |
2 3
|
anim12i |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( A e. CC /\ B e. CC ) ) |
5 |
|
mulexp |
|- ( ( A e. CC /\ B e. CC /\ N e. NN0 ) -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) |
6 |
5
|
3expa |
|- ( ( ( A e. CC /\ B e. CC ) /\ N e. NN0 ) -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) |
7 |
4 6
|
sylan |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ N e. NN0 ) -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) |
8 |
|
simplll |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> A e. CC ) |
9 |
|
simplrl |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> B e. CC ) |
10 |
8 9
|
mulcld |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A x. B ) e. CC ) |
11 |
|
recn |
|- ( N e. RR -> N e. CC ) |
12 |
11
|
ad2antrl |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> N e. CC ) |
13 |
|
nnnn0 |
|- ( -u N e. NN -> -u N e. NN0 ) |
14 |
13
|
ad2antll |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u N e. NN0 ) |
15 |
|
expneg2 |
|- ( ( ( A x. B ) e. CC /\ N e. CC /\ -u N e. NN0 ) -> ( ( A x. B ) ^ N ) = ( 1 / ( ( A x. B ) ^ -u N ) ) ) |
16 |
10 12 14 15
|
syl3anc |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( A x. B ) ^ N ) = ( 1 / ( ( A x. B ) ^ -u N ) ) ) |
17 |
|
expneg2 |
|- ( ( A e. CC /\ N e. CC /\ -u N e. NN0 ) -> ( A ^ N ) = ( 1 / ( A ^ -u N ) ) ) |
18 |
8 12 14 17
|
syl3anc |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ N ) = ( 1 / ( A ^ -u N ) ) ) |
19 |
|
expneg2 |
|- ( ( B e. CC /\ N e. CC /\ -u N e. NN0 ) -> ( B ^ N ) = ( 1 / ( B ^ -u N ) ) ) |
20 |
9 12 14 19
|
syl3anc |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( B ^ N ) = ( 1 / ( B ^ -u N ) ) ) |
21 |
18 20
|
oveq12d |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( A ^ N ) x. ( B ^ N ) ) = ( ( 1 / ( A ^ -u N ) ) x. ( 1 / ( B ^ -u N ) ) ) ) |
22 |
|
mulexp |
|- ( ( A e. CC /\ B e. CC /\ -u N e. NN0 ) -> ( ( A x. B ) ^ -u N ) = ( ( A ^ -u N ) x. ( B ^ -u N ) ) ) |
23 |
8 9 14 22
|
syl3anc |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( A x. B ) ^ -u N ) = ( ( A ^ -u N ) x. ( B ^ -u N ) ) ) |
24 |
23
|
oveq2d |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( 1 / ( ( A x. B ) ^ -u N ) ) = ( 1 / ( ( A ^ -u N ) x. ( B ^ -u N ) ) ) ) |
25 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
26 |
25
|
oveq1i |
|- ( ( 1 x. 1 ) / ( ( A ^ -u N ) x. ( B ^ -u N ) ) ) = ( 1 / ( ( A ^ -u N ) x. ( B ^ -u N ) ) ) |
27 |
24 26
|
eqtr4di |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( 1 / ( ( A x. B ) ^ -u N ) ) = ( ( 1 x. 1 ) / ( ( A ^ -u N ) x. ( B ^ -u N ) ) ) ) |
28 |
|
expcl |
|- ( ( A e. CC /\ -u N e. NN0 ) -> ( A ^ -u N ) e. CC ) |
29 |
8 14 28
|
syl2anc |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ -u N ) e. CC ) |
30 |
|
simpllr |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> A =/= 0 ) |
31 |
|
nnz |
|- ( -u N e. NN -> -u N e. ZZ ) |
32 |
31
|
ad2antll |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u N e. ZZ ) |
33 |
|
expne0i |
|- ( ( A e. CC /\ A =/= 0 /\ -u N e. ZZ ) -> ( A ^ -u N ) =/= 0 ) |
34 |
8 30 32 33
|
syl3anc |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ -u N ) =/= 0 ) |
35 |
|
expcl |
|- ( ( B e. CC /\ -u N e. NN0 ) -> ( B ^ -u N ) e. CC ) |
36 |
9 14 35
|
syl2anc |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( B ^ -u N ) e. CC ) |
37 |
|
simplrr |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> B =/= 0 ) |
38 |
|
expne0i |
|- ( ( B e. CC /\ B =/= 0 /\ -u N e. ZZ ) -> ( B ^ -u N ) =/= 0 ) |
39 |
9 37 32 38
|
syl3anc |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( B ^ -u N ) =/= 0 ) |
40 |
|
ax-1cn |
|- 1 e. CC |
41 |
|
divmuldiv |
|- ( ( ( 1 e. CC /\ 1 e. CC ) /\ ( ( ( A ^ -u N ) e. CC /\ ( A ^ -u N ) =/= 0 ) /\ ( ( B ^ -u N ) e. CC /\ ( B ^ -u N ) =/= 0 ) ) ) -> ( ( 1 / ( A ^ -u N ) ) x. ( 1 / ( B ^ -u N ) ) ) = ( ( 1 x. 1 ) / ( ( A ^ -u N ) x. ( B ^ -u N ) ) ) ) |
42 |
40 40 41
|
mpanl12 |
|- ( ( ( ( A ^ -u N ) e. CC /\ ( A ^ -u N ) =/= 0 ) /\ ( ( B ^ -u N ) e. CC /\ ( B ^ -u N ) =/= 0 ) ) -> ( ( 1 / ( A ^ -u N ) ) x. ( 1 / ( B ^ -u N ) ) ) = ( ( 1 x. 1 ) / ( ( A ^ -u N ) x. ( B ^ -u N ) ) ) ) |
43 |
29 34 36 39 42
|
syl22anc |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( 1 / ( A ^ -u N ) ) x. ( 1 / ( B ^ -u N ) ) ) = ( ( 1 x. 1 ) / ( ( A ^ -u N ) x. ( B ^ -u N ) ) ) ) |
44 |
27 43
|
eqtr4d |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( 1 / ( ( A x. B ) ^ -u N ) ) = ( ( 1 / ( A ^ -u N ) ) x. ( 1 / ( B ^ -u N ) ) ) ) |
45 |
21 44
|
eqtr4d |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( A ^ N ) x. ( B ^ N ) ) = ( 1 / ( ( A x. B ) ^ -u N ) ) ) |
46 |
16 45
|
eqtr4d |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) |
47 |
7 46
|
jaodan |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) |
48 |
1 47
|
sylan2b |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ N e. ZZ ) -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) |
49 |
48
|
3impa |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ N e. ZZ ) -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) |