| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulg0.b |
|- B = ( Base ` G ) |
| 2 |
|
mulg0.o |
|- .0. = ( 0g ` G ) |
| 3 |
|
mulg0.t |
|- .x. = ( .g ` G ) |
| 4 |
|
0z |
|- 0 e. ZZ |
| 5 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 6 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
| 7 |
|
eqid |
|- seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) |
| 8 |
1 5 2 6 3 7
|
mulgval |
|- ( ( 0 e. ZZ /\ X e. B ) -> ( 0 .x. X ) = if ( 0 = 0 , .0. , if ( 0 < 0 , ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` 0 ) , ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u 0 ) ) ) ) ) |
| 9 |
|
eqid |
|- 0 = 0 |
| 10 |
9
|
iftruei |
|- if ( 0 = 0 , .0. , if ( 0 < 0 , ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` 0 ) , ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u 0 ) ) ) ) = .0. |
| 11 |
8 10
|
eqtrdi |
|- ( ( 0 e. ZZ /\ X e. B ) -> ( 0 .x. X ) = .0. ) |
| 12 |
4 11
|
mpan |
|- ( X e. B -> ( 0 .x. X ) = .0. ) |