Step |
Hyp |
Ref |
Expression |
1 |
|
mulg1.b |
|- B = ( Base ` G ) |
2 |
|
mulg1.m |
|- .x. = ( .g ` G ) |
3 |
|
1nn |
|- 1 e. NN |
4 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
5 |
|
eqid |
|- seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) |
6 |
1 4 2 5
|
mulgnn |
|- ( ( 1 e. NN /\ X e. B ) -> ( 1 .x. X ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` 1 ) ) |
7 |
3 6
|
mpan |
|- ( X e. B -> ( 1 .x. X ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` 1 ) ) |
8 |
|
1z |
|- 1 e. ZZ |
9 |
|
fvconst2g |
|- ( ( X e. B /\ 1 e. NN ) -> ( ( NN X. { X } ) ` 1 ) = X ) |
10 |
3 9
|
mpan2 |
|- ( X e. B -> ( ( NN X. { X } ) ` 1 ) = X ) |
11 |
8 10
|
seq1i |
|- ( X e. B -> ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` 1 ) = X ) |
12 |
7 11
|
eqtrd |
|- ( X e. B -> ( 1 .x. X ) = X ) |