| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulg1.b |
|- B = ( Base ` G ) |
| 2 |
|
mulg1.m |
|- .x. = ( .g ` G ) |
| 3 |
|
mulgnnp1.p |
|- .+ = ( +g ` G ) |
| 4 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 5 |
4
|
oveq1i |
|- ( 2 .x. X ) = ( ( 1 + 1 ) .x. X ) |
| 6 |
|
1nn |
|- 1 e. NN |
| 7 |
1 2 3
|
mulgnnp1 |
|- ( ( 1 e. NN /\ X e. B ) -> ( ( 1 + 1 ) .x. X ) = ( ( 1 .x. X ) .+ X ) ) |
| 8 |
6 7
|
mpan |
|- ( X e. B -> ( ( 1 + 1 ) .x. X ) = ( ( 1 .x. X ) .+ X ) ) |
| 9 |
5 8
|
eqtrid |
|- ( X e. B -> ( 2 .x. X ) = ( ( 1 .x. X ) .+ X ) ) |
| 10 |
1 2
|
mulg1 |
|- ( X e. B -> ( 1 .x. X ) = X ) |
| 11 |
10
|
oveq1d |
|- ( X e. B -> ( ( 1 .x. X ) .+ X ) = ( X .+ X ) ) |
| 12 |
9 11
|
eqtrd |
|- ( X e. B -> ( 2 .x. X ) = ( X .+ X ) ) |