Metamath Proof Explorer


Theorem mulg2

Description: Group multiple (exponentiation) operation at two. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses mulg1.b
|- B = ( Base ` G )
mulg1.m
|- .x. = ( .g ` G )
mulgnnp1.p
|- .+ = ( +g ` G )
Assertion mulg2
|- ( X e. B -> ( 2 .x. X ) = ( X .+ X ) )

Proof

Step Hyp Ref Expression
1 mulg1.b
 |-  B = ( Base ` G )
2 mulg1.m
 |-  .x. = ( .g ` G )
3 mulgnnp1.p
 |-  .+ = ( +g ` G )
4 df-2
 |-  2 = ( 1 + 1 )
5 4 oveq1i
 |-  ( 2 .x. X ) = ( ( 1 + 1 ) .x. X )
6 1nn
 |-  1 e. NN
7 1 2 3 mulgnnp1
 |-  ( ( 1 e. NN /\ X e. B ) -> ( ( 1 + 1 ) .x. X ) = ( ( 1 .x. X ) .+ X ) )
8 6 7 mpan
 |-  ( X e. B -> ( ( 1 + 1 ) .x. X ) = ( ( 1 .x. X ) .+ X ) )
9 5 8 eqtrid
 |-  ( X e. B -> ( 2 .x. X ) = ( ( 1 .x. X ) .+ X ) )
10 1 2 mulg1
 |-  ( X e. B -> ( 1 .x. X ) = X )
11 10 oveq1d
 |-  ( X e. B -> ( ( 1 .x. X ) .+ X ) = ( X .+ X ) )
12 9 11 eqtrd
 |-  ( X e. B -> ( 2 .x. X ) = ( X .+ X ) )