Step |
Hyp |
Ref |
Expression |
1 |
|
mulgass3.b |
|- B = ( Base ` R ) |
2 |
|
mulgass3.m |
|- .x. = ( .g ` R ) |
3 |
|
mulgass3.t |
|- .X. = ( .r ` R ) |
4 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
5 |
4
|
opprring |
|- ( R e. Ring -> ( oppR ` R ) e. Ring ) |
6 |
5
|
adantr |
|- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> ( oppR ` R ) e. Ring ) |
7 |
|
simpr1 |
|- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> N e. ZZ ) |
8 |
|
simpr3 |
|- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> Y e. B ) |
9 |
|
simpr2 |
|- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> X e. B ) |
10 |
4 1
|
opprbas |
|- B = ( Base ` ( oppR ` R ) ) |
11 |
|
eqid |
|- ( .g ` ( oppR ` R ) ) = ( .g ` ( oppR ` R ) ) |
12 |
|
eqid |
|- ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) |
13 |
10 11 12
|
mulgass2 |
|- ( ( ( oppR ` R ) e. Ring /\ ( N e. ZZ /\ Y e. B /\ X e. B ) ) -> ( ( N ( .g ` ( oppR ` R ) ) Y ) ( .r ` ( oppR ` R ) ) X ) = ( N ( .g ` ( oppR ` R ) ) ( Y ( .r ` ( oppR ` R ) ) X ) ) ) |
14 |
6 7 8 9 13
|
syl13anc |
|- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> ( ( N ( .g ` ( oppR ` R ) ) Y ) ( .r ` ( oppR ` R ) ) X ) = ( N ( .g ` ( oppR ` R ) ) ( Y ( .r ` ( oppR ` R ) ) X ) ) ) |
15 |
1 3 4 12
|
opprmul |
|- ( ( N ( .g ` ( oppR ` R ) ) Y ) ( .r ` ( oppR ` R ) ) X ) = ( X .X. ( N ( .g ` ( oppR ` R ) ) Y ) ) |
16 |
1 3 4 12
|
opprmul |
|- ( Y ( .r ` ( oppR ` R ) ) X ) = ( X .X. Y ) |
17 |
16
|
oveq2i |
|- ( N ( .g ` ( oppR ` R ) ) ( Y ( .r ` ( oppR ` R ) ) X ) ) = ( N ( .g ` ( oppR ` R ) ) ( X .X. Y ) ) |
18 |
14 15 17
|
3eqtr3g |
|- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> ( X .X. ( N ( .g ` ( oppR ` R ) ) Y ) ) = ( N ( .g ` ( oppR ` R ) ) ( X .X. Y ) ) ) |
19 |
1
|
a1i |
|- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> B = ( Base ` R ) ) |
20 |
10
|
a1i |
|- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> B = ( Base ` ( oppR ` R ) ) ) |
21 |
|
ssv |
|- B C_ _V |
22 |
21
|
a1i |
|- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> B C_ _V ) |
23 |
|
ovexd |
|- ( ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) /\ ( x e. _V /\ y e. _V ) ) -> ( x ( +g ` R ) y ) e. _V ) |
24 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
25 |
4 24
|
oppradd |
|- ( +g ` R ) = ( +g ` ( oppR ` R ) ) |
26 |
25
|
oveqi |
|- ( x ( +g ` R ) y ) = ( x ( +g ` ( oppR ` R ) ) y ) |
27 |
26
|
a1i |
|- ( ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) /\ ( x e. _V /\ y e. _V ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` ( oppR ` R ) ) y ) ) |
28 |
2 11 19 20 22 23 27
|
mulgpropd |
|- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> .x. = ( .g ` ( oppR ` R ) ) ) |
29 |
28
|
oveqd |
|- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> ( N .x. Y ) = ( N ( .g ` ( oppR ` R ) ) Y ) ) |
30 |
29
|
oveq2d |
|- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> ( X .X. ( N .x. Y ) ) = ( X .X. ( N ( .g ` ( oppR ` R ) ) Y ) ) ) |
31 |
28
|
oveqd |
|- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> ( N .x. ( X .X. Y ) ) = ( N ( .g ` ( oppR ` R ) ) ( X .X. Y ) ) ) |
32 |
18 30 31
|
3eqtr4d |
|- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> ( X .X. ( N .x. Y ) ) = ( N .x. ( X .X. Y ) ) ) |