| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulgass.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | mulgass.t |  |-  .x. = ( .g ` G ) | 
						
							| 3 |  | zcn |  |-  ( N e. ZZ -> N e. CC ) | 
						
							| 4 | 3 | 3ad2ant2 |  |-  ( ( M e. ZZ /\ N e. ZZ /\ X e. B ) -> N e. CC ) | 
						
							| 5 |  | zcn |  |-  ( M e. ZZ -> M e. CC ) | 
						
							| 6 | 5 | 3ad2ant1 |  |-  ( ( M e. ZZ /\ N e. ZZ /\ X e. B ) -> M e. CC ) | 
						
							| 7 | 4 6 | mulcomd |  |-  ( ( M e. ZZ /\ N e. ZZ /\ X e. B ) -> ( N x. M ) = ( M x. N ) ) | 
						
							| 8 | 7 | adantl |  |-  ( ( G e. Grp /\ ( M e. ZZ /\ N e. ZZ /\ X e. B ) ) -> ( N x. M ) = ( M x. N ) ) | 
						
							| 9 | 8 | oveq1d |  |-  ( ( G e. Grp /\ ( M e. ZZ /\ N e. ZZ /\ X e. B ) ) -> ( ( N x. M ) .x. X ) = ( ( M x. N ) .x. X ) ) | 
						
							| 10 | 1 2 | mulgass |  |-  ( ( G e. Grp /\ ( M e. ZZ /\ N e. ZZ /\ X e. B ) ) -> ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) ) | 
						
							| 11 | 9 10 | eqtrd |  |-  ( ( G e. Grp /\ ( M e. ZZ /\ N e. ZZ /\ X e. B ) ) -> ( ( N x. M ) .x. X ) = ( M .x. ( N .x. X ) ) ) |