Step |
Hyp |
Ref |
Expression |
1 |
|
mulgcd |
|- ( ( C e. NN0 /\ A e. ZZ /\ B e. ZZ ) -> ( ( C x. A ) gcd ( C x. B ) ) = ( C x. ( A gcd B ) ) ) |
2 |
1
|
3coml |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN0 ) -> ( ( C x. A ) gcd ( C x. B ) ) = ( C x. ( A gcd B ) ) ) |
3 |
|
zcn |
|- ( A e. ZZ -> A e. CC ) |
4 |
3
|
3ad2ant1 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN0 ) -> A e. CC ) |
5 |
|
nn0cn |
|- ( C e. NN0 -> C e. CC ) |
6 |
5
|
3ad2ant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN0 ) -> C e. CC ) |
7 |
4 6
|
mulcomd |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN0 ) -> ( A x. C ) = ( C x. A ) ) |
8 |
|
zcn |
|- ( B e. ZZ -> B e. CC ) |
9 |
8
|
3ad2ant2 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN0 ) -> B e. CC ) |
10 |
9 6
|
mulcomd |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN0 ) -> ( B x. C ) = ( C x. B ) ) |
11 |
7 10
|
oveq12d |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN0 ) -> ( ( A x. C ) gcd ( B x. C ) ) = ( ( C x. A ) gcd ( C x. B ) ) ) |
12 |
|
gcdcl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) e. NN0 ) |
13 |
12
|
3adant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN0 ) -> ( A gcd B ) e. NN0 ) |
14 |
13
|
nn0cnd |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN0 ) -> ( A gcd B ) e. CC ) |
15 |
14 6
|
mulcomd |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN0 ) -> ( ( A gcd B ) x. C ) = ( C x. ( A gcd B ) ) ) |
16 |
2 11 15
|
3eqtr4d |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN0 ) -> ( ( A x. C ) gcd ( B x. C ) ) = ( ( A gcd B ) x. C ) ) |