| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulgnncl.b |
|- B = ( Base ` G ) |
| 2 |
|
mulgnncl.t |
|- .x. = ( .g ` G ) |
| 3 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 4 |
|
id |
|- ( G e. Grp -> G e. Grp ) |
| 5 |
|
ssidd |
|- ( G e. Grp -> B C_ B ) |
| 6 |
1 3
|
grpcl |
|- ( ( G e. Grp /\ x e. B /\ y e. B ) -> ( x ( +g ` G ) y ) e. B ) |
| 7 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 8 |
1 7
|
grpidcl |
|- ( G e. Grp -> ( 0g ` G ) e. B ) |
| 9 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
| 10 |
1 9
|
grpinvcl |
|- ( ( G e. Grp /\ x e. B ) -> ( ( invg ` G ) ` x ) e. B ) |
| 11 |
1 2 3 4 5 6 7 8 9 10
|
mulgsubcl |
|- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( N .x. X ) e. B ) |