Description: Deduction associated with mulgcl . (Contributed by Rohan Ridenour, 3-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgcld.1 | |- B = ( Base ` G ) |
|
| mulgcld.2 | |- .x. = ( .g ` G ) |
||
| mulgcld.3 | |- ( ph -> G e. Grp ) |
||
| mulgcld.4 | |- ( ph -> N e. ZZ ) |
||
| mulgcld.5 | |- ( ph -> X e. B ) |
||
| Assertion | mulgcld | |- ( ph -> ( N .x. X ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgcld.1 | |- B = ( Base ` G ) |
|
| 2 | mulgcld.2 | |- .x. = ( .g ` G ) |
|
| 3 | mulgcld.3 | |- ( ph -> G e. Grp ) |
|
| 4 | mulgcld.4 | |- ( ph -> N e. ZZ ) |
|
| 5 | mulgcld.5 | |- ( ph -> X e. B ) |
|
| 6 | 1 2 | mulgcl | |- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( N .x. X ) e. B ) |
| 7 | 3 4 5 6 | syl3anc | |- ( ph -> ( N .x. X ) e. B ) |