| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0red |
|- ( ( A e. RR /\ B e. RR ) -> 0 e. RR ) |
| 2 |
|
simpl |
|- ( ( A e. RR /\ B e. RR ) -> A e. RR ) |
| 3 |
1 2
|
leloed |
|- ( ( A e. RR /\ B e. RR ) -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) |
| 4 |
|
simpr |
|- ( ( A e. RR /\ B e. RR ) -> B e. RR ) |
| 5 |
1 4
|
leloed |
|- ( ( A e. RR /\ B e. RR ) -> ( 0 <_ B <-> ( 0 < B \/ 0 = B ) ) ) |
| 6 |
3 5
|
anbi12d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( 0 <_ A /\ 0 <_ B ) <-> ( ( 0 < A \/ 0 = A ) /\ ( 0 < B \/ 0 = B ) ) ) ) |
| 7 |
|
0red |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 < A /\ 0 < B ) ) -> 0 e. RR ) |
| 8 |
|
simpll |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 < A /\ 0 < B ) ) -> A e. RR ) |
| 9 |
|
simplr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 < A /\ 0 < B ) ) -> B e. RR ) |
| 10 |
8 9
|
remulcld |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 < A /\ 0 < B ) ) -> ( A x. B ) e. RR ) |
| 11 |
|
mulgt0 |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> 0 < ( A x. B ) ) |
| 12 |
11
|
an4s |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 < A /\ 0 < B ) ) -> 0 < ( A x. B ) ) |
| 13 |
7 10 12
|
ltled |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 < A /\ 0 < B ) ) -> 0 <_ ( A x. B ) ) |
| 14 |
13
|
ex |
|- ( ( A e. RR /\ B e. RR ) -> ( ( 0 < A /\ 0 < B ) -> 0 <_ ( A x. B ) ) ) |
| 15 |
|
0re |
|- 0 e. RR |
| 16 |
|
leid |
|- ( 0 e. RR -> 0 <_ 0 ) |
| 17 |
15 16
|
ax-mp |
|- 0 <_ 0 |
| 18 |
4
|
recnd |
|- ( ( A e. RR /\ B e. RR ) -> B e. CC ) |
| 19 |
18
|
mul02d |
|- ( ( A e. RR /\ B e. RR ) -> ( 0 x. B ) = 0 ) |
| 20 |
17 19
|
breqtrrid |
|- ( ( A e. RR /\ B e. RR ) -> 0 <_ ( 0 x. B ) ) |
| 21 |
|
oveq1 |
|- ( 0 = A -> ( 0 x. B ) = ( A x. B ) ) |
| 22 |
21
|
breq2d |
|- ( 0 = A -> ( 0 <_ ( 0 x. B ) <-> 0 <_ ( A x. B ) ) ) |
| 23 |
20 22
|
syl5ibcom |
|- ( ( A e. RR /\ B e. RR ) -> ( 0 = A -> 0 <_ ( A x. B ) ) ) |
| 24 |
23
|
adantrd |
|- ( ( A e. RR /\ B e. RR ) -> ( ( 0 = A /\ 0 < B ) -> 0 <_ ( A x. B ) ) ) |
| 25 |
2
|
recnd |
|- ( ( A e. RR /\ B e. RR ) -> A e. CC ) |
| 26 |
25
|
mul01d |
|- ( ( A e. RR /\ B e. RR ) -> ( A x. 0 ) = 0 ) |
| 27 |
17 26
|
breqtrrid |
|- ( ( A e. RR /\ B e. RR ) -> 0 <_ ( A x. 0 ) ) |
| 28 |
|
oveq2 |
|- ( 0 = B -> ( A x. 0 ) = ( A x. B ) ) |
| 29 |
28
|
breq2d |
|- ( 0 = B -> ( 0 <_ ( A x. 0 ) <-> 0 <_ ( A x. B ) ) ) |
| 30 |
27 29
|
syl5ibcom |
|- ( ( A e. RR /\ B e. RR ) -> ( 0 = B -> 0 <_ ( A x. B ) ) ) |
| 31 |
30
|
adantld |
|- ( ( A e. RR /\ B e. RR ) -> ( ( 0 < A /\ 0 = B ) -> 0 <_ ( A x. B ) ) ) |
| 32 |
30
|
adantld |
|- ( ( A e. RR /\ B e. RR ) -> ( ( 0 = A /\ 0 = B ) -> 0 <_ ( A x. B ) ) ) |
| 33 |
14 24 31 32
|
ccased |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( 0 < A \/ 0 = A ) /\ ( 0 < B \/ 0 = B ) ) -> 0 <_ ( A x. B ) ) ) |
| 34 |
6 33
|
sylbid |
|- ( ( A e. RR /\ B e. RR ) -> ( ( 0 <_ A /\ 0 <_ B ) -> 0 <_ ( A x. B ) ) ) |
| 35 |
34
|
imp |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ 0 <_ B ) ) -> 0 <_ ( A x. B ) ) |
| 36 |
35
|
an4s |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> 0 <_ ( A x. B ) ) |