Description: The product of two nonnegative numbers is nonnegative. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | leidd.1 | |- ( ph -> A e. RR ) |
|
| ltnegd.2 | |- ( ph -> B e. RR ) |
||
| addge0d.3 | |- ( ph -> 0 <_ A ) |
||
| addge0d.4 | |- ( ph -> 0 <_ B ) |
||
| Assertion | mulge0d | |- ( ph -> 0 <_ ( A x. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leidd.1 | |- ( ph -> A e. RR ) |
|
| 2 | ltnegd.2 | |- ( ph -> B e. RR ) |
|
| 3 | addge0d.3 | |- ( ph -> 0 <_ A ) |
|
| 4 | addge0d.4 | |- ( ph -> 0 <_ B ) |
|
| 5 | mulge0 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> 0 <_ ( A x. B ) ) |
|
| 6 | 1 3 2 4 5 | syl22anc | |- ( ph -> 0 <_ ( A x. B ) ) |