Metamath Proof Explorer


Theorem mulge0d

Description: The product of two nonnegative numbers is nonnegative. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1
|- ( ph -> A e. RR )
ltnegd.2
|- ( ph -> B e. RR )
addge0d.3
|- ( ph -> 0 <_ A )
addge0d.4
|- ( ph -> 0 <_ B )
Assertion mulge0d
|- ( ph -> 0 <_ ( A x. B ) )

Proof

Step Hyp Ref Expression
1 leidd.1
 |-  ( ph -> A e. RR )
2 ltnegd.2
 |-  ( ph -> B e. RR )
3 addge0d.3
 |-  ( ph -> 0 <_ A )
4 addge0d.4
 |-  ( ph -> 0 <_ B )
5 mulge0
 |-  ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> 0 <_ ( A x. B ) )
6 1 3 2 4 5 syl22anc
 |-  ( ph -> 0 <_ ( A x. B ) )