| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulgfvi.t |
|- .x. = ( .g ` G ) |
| 2 |
|
fvi |
|- ( G e. _V -> ( _I ` G ) = G ) |
| 3 |
2
|
eqcomd |
|- ( G e. _V -> G = ( _I ` G ) ) |
| 4 |
3
|
fveq2d |
|- ( G e. _V -> ( .g ` G ) = ( .g ` ( _I ` G ) ) ) |
| 5 |
|
fvprc |
|- ( -. G e. _V -> ( .g ` G ) = (/) ) |
| 6 |
|
fvprc |
|- ( -. G e. _V -> ( _I ` G ) = (/) ) |
| 7 |
6
|
fveq2d |
|- ( -. G e. _V -> ( .g ` ( _I ` G ) ) = ( .g ` (/) ) ) |
| 8 |
|
base0 |
|- (/) = ( Base ` (/) ) |
| 9 |
|
eqid |
|- ( .g ` (/) ) = ( .g ` (/) ) |
| 10 |
8 9
|
mulgfn |
|- ( .g ` (/) ) Fn ( ZZ X. (/) ) |
| 11 |
|
xp0 |
|- ( ZZ X. (/) ) = (/) |
| 12 |
11
|
fneq2i |
|- ( ( .g ` (/) ) Fn ( ZZ X. (/) ) <-> ( .g ` (/) ) Fn (/) ) |
| 13 |
10 12
|
mpbi |
|- ( .g ` (/) ) Fn (/) |
| 14 |
|
fn0 |
|- ( ( .g ` (/) ) Fn (/) <-> ( .g ` (/) ) = (/) ) |
| 15 |
13 14
|
mpbi |
|- ( .g ` (/) ) = (/) |
| 16 |
7 15
|
eqtrdi |
|- ( -. G e. _V -> ( .g ` ( _I ` G ) ) = (/) ) |
| 17 |
5 16
|
eqtr4d |
|- ( -. G e. _V -> ( .g ` G ) = ( .g ` ( _I ` G ) ) ) |
| 18 |
4 17
|
pm2.61i |
|- ( .g ` G ) = ( .g ` ( _I ` G ) ) |
| 19 |
1 18
|
eqtri |
|- .x. = ( .g ` ( _I ` G ) ) |