| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulgfvi.t |  |-  .x. = ( .g ` G ) | 
						
							| 2 |  | fvi |  |-  ( G e. _V -> ( _I ` G ) = G ) | 
						
							| 3 | 2 | eqcomd |  |-  ( G e. _V -> G = ( _I ` G ) ) | 
						
							| 4 | 3 | fveq2d |  |-  ( G e. _V -> ( .g ` G ) = ( .g ` ( _I ` G ) ) ) | 
						
							| 5 |  | fvprc |  |-  ( -. G e. _V -> ( .g ` G ) = (/) ) | 
						
							| 6 |  | fvprc |  |-  ( -. G e. _V -> ( _I ` G ) = (/) ) | 
						
							| 7 | 6 | fveq2d |  |-  ( -. G e. _V -> ( .g ` ( _I ` G ) ) = ( .g ` (/) ) ) | 
						
							| 8 |  | base0 |  |-  (/) = ( Base ` (/) ) | 
						
							| 9 |  | eqid |  |-  ( .g ` (/) ) = ( .g ` (/) ) | 
						
							| 10 | 8 9 | mulgfn |  |-  ( .g ` (/) ) Fn ( ZZ X. (/) ) | 
						
							| 11 |  | xp0 |  |-  ( ZZ X. (/) ) = (/) | 
						
							| 12 | 11 | fneq2i |  |-  ( ( .g ` (/) ) Fn ( ZZ X. (/) ) <-> ( .g ` (/) ) Fn (/) ) | 
						
							| 13 | 10 12 | mpbi |  |-  ( .g ` (/) ) Fn (/) | 
						
							| 14 |  | fn0 |  |-  ( ( .g ` (/) ) Fn (/) <-> ( .g ` (/) ) = (/) ) | 
						
							| 15 | 13 14 | mpbi |  |-  ( .g ` (/) ) = (/) | 
						
							| 16 | 7 15 | eqtrdi |  |-  ( -. G e. _V -> ( .g ` ( _I ` G ) ) = (/) ) | 
						
							| 17 | 5 16 | eqtr4d |  |-  ( -. G e. _V -> ( .g ` G ) = ( .g ` ( _I ` G ) ) ) | 
						
							| 18 | 4 17 | pm2.61i |  |-  ( .g ` G ) = ( .g ` ( _I ` G ) ) | 
						
							| 19 | 1 18 | eqtri |  |-  .x. = ( .g ` ( _I ` G ) ) |