Step |
Hyp |
Ref |
Expression |
1 |
|
mulginvcom.b |
|- B = ( Base ` G ) |
2 |
|
mulginvcom.t |
|- .x. = ( .g ` G ) |
3 |
|
mulginvcom.i |
|- I = ( invg ` G ) |
4 |
1 3
|
grpinvcl |
|- ( ( G e. Grp /\ X e. B ) -> ( I ` X ) e. B ) |
5 |
4
|
3adant2 |
|- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( I ` X ) e. B ) |
6 |
1 2 3
|
mulginvcom |
|- ( ( G e. Grp /\ N e. ZZ /\ ( I ` X ) e. B ) -> ( N .x. ( I ` ( I ` X ) ) ) = ( I ` ( N .x. ( I ` X ) ) ) ) |
7 |
5 6
|
syld3an3 |
|- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( N .x. ( I ` ( I ` X ) ) ) = ( I ` ( N .x. ( I ` X ) ) ) ) |
8 |
1 3
|
grpinvinv |
|- ( ( G e. Grp /\ X e. B ) -> ( I ` ( I ` X ) ) = X ) |
9 |
8
|
3adant2 |
|- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( I ` ( I ` X ) ) = X ) |
10 |
9
|
oveq2d |
|- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( N .x. ( I ` ( I ` X ) ) ) = ( N .x. X ) ) |
11 |
7 10
|
eqtr3d |
|- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( I ` ( N .x. ( I ` X ) ) ) = ( N .x. X ) ) |