| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulgmodid.b |
|- B = ( Base ` G ) |
| 2 |
|
mulgmodid.o |
|- .0. = ( 0g ` G ) |
| 3 |
|
mulgmodid.t |
|- .x. = ( .g ` G ) |
| 4 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
| 5 |
|
nnrp |
|- ( M e. NN -> M e. RR+ ) |
| 6 |
|
modval |
|- ( ( N e. RR /\ M e. RR+ ) -> ( N mod M ) = ( N - ( M x. ( |_ ` ( N / M ) ) ) ) ) |
| 7 |
4 5 6
|
syl2an |
|- ( ( N e. ZZ /\ M e. NN ) -> ( N mod M ) = ( N - ( M x. ( |_ ` ( N / M ) ) ) ) ) |
| 8 |
7
|
3ad2ant2 |
|- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( N mod M ) = ( N - ( M x. ( |_ ` ( N / M ) ) ) ) ) |
| 9 |
8
|
oveq1d |
|- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( ( N mod M ) .x. X ) = ( ( N - ( M x. ( |_ ` ( N / M ) ) ) ) .x. X ) ) |
| 10 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
| 11 |
10
|
adantr |
|- ( ( N e. ZZ /\ M e. NN ) -> N e. CC ) |
| 12 |
|
nnz |
|- ( M e. NN -> M e. ZZ ) |
| 13 |
12
|
adantl |
|- ( ( N e. ZZ /\ M e. NN ) -> M e. ZZ ) |
| 14 |
|
nnre |
|- ( M e. NN -> M e. RR ) |
| 15 |
|
nnne0 |
|- ( M e. NN -> M =/= 0 ) |
| 16 |
|
redivcl |
|- ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( N / M ) e. RR ) |
| 17 |
4 14 15 16
|
syl3an |
|- ( ( N e. ZZ /\ M e. NN /\ M e. NN ) -> ( N / M ) e. RR ) |
| 18 |
17
|
3anidm23 |
|- ( ( N e. ZZ /\ M e. NN ) -> ( N / M ) e. RR ) |
| 19 |
18
|
flcld |
|- ( ( N e. ZZ /\ M e. NN ) -> ( |_ ` ( N / M ) ) e. ZZ ) |
| 20 |
13 19
|
zmulcld |
|- ( ( N e. ZZ /\ M e. NN ) -> ( M x. ( |_ ` ( N / M ) ) ) e. ZZ ) |
| 21 |
20
|
zcnd |
|- ( ( N e. ZZ /\ M e. NN ) -> ( M x. ( |_ ` ( N / M ) ) ) e. CC ) |
| 22 |
11 21
|
negsubd |
|- ( ( N e. ZZ /\ M e. NN ) -> ( N + -u ( M x. ( |_ ` ( N / M ) ) ) ) = ( N - ( M x. ( |_ ` ( N / M ) ) ) ) ) |
| 23 |
22
|
3ad2ant2 |
|- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( N + -u ( M x. ( |_ ` ( N / M ) ) ) ) = ( N - ( M x. ( |_ ` ( N / M ) ) ) ) ) |
| 24 |
23
|
oveq1d |
|- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( ( N + -u ( M x. ( |_ ` ( N / M ) ) ) ) .x. X ) = ( ( N - ( M x. ( |_ ` ( N / M ) ) ) ) .x. X ) ) |
| 25 |
|
simp1 |
|- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> G e. Grp ) |
| 26 |
|
simpl |
|- ( ( N e. ZZ /\ M e. NN ) -> N e. ZZ ) |
| 27 |
26
|
3ad2ant2 |
|- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> N e. ZZ ) |
| 28 |
13
|
3ad2ant2 |
|- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> M e. ZZ ) |
| 29 |
19
|
3ad2ant2 |
|- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( |_ ` ( N / M ) ) e. ZZ ) |
| 30 |
28 29
|
zmulcld |
|- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( M x. ( |_ ` ( N / M ) ) ) e. ZZ ) |
| 31 |
30
|
znegcld |
|- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> -u ( M x. ( |_ ` ( N / M ) ) ) e. ZZ ) |
| 32 |
|
simpl |
|- ( ( X e. B /\ ( M .x. X ) = .0. ) -> X e. B ) |
| 33 |
32
|
3ad2ant3 |
|- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> X e. B ) |
| 34 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 35 |
1 3 34
|
mulgdir |
|- ( ( G e. Grp /\ ( N e. ZZ /\ -u ( M x. ( |_ ` ( N / M ) ) ) e. ZZ /\ X e. B ) ) -> ( ( N + -u ( M x. ( |_ ` ( N / M ) ) ) ) .x. X ) = ( ( N .x. X ) ( +g ` G ) ( -u ( M x. ( |_ ` ( N / M ) ) ) .x. X ) ) ) |
| 36 |
25 27 31 33 35
|
syl13anc |
|- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( ( N + -u ( M x. ( |_ ` ( N / M ) ) ) ) .x. X ) = ( ( N .x. X ) ( +g ` G ) ( -u ( M x. ( |_ ` ( N / M ) ) ) .x. X ) ) ) |
| 37 |
9 24 36
|
3eqtr2d |
|- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( ( N mod M ) .x. X ) = ( ( N .x. X ) ( +g ` G ) ( -u ( M x. ( |_ ` ( N / M ) ) ) .x. X ) ) ) |
| 38 |
|
nncn |
|- ( M e. NN -> M e. CC ) |
| 39 |
38
|
adantl |
|- ( ( N e. ZZ /\ M e. NN ) -> M e. CC ) |
| 40 |
19
|
zcnd |
|- ( ( N e. ZZ /\ M e. NN ) -> ( |_ ` ( N / M ) ) e. CC ) |
| 41 |
39 40
|
mulneg2d |
|- ( ( N e. ZZ /\ M e. NN ) -> ( M x. -u ( |_ ` ( N / M ) ) ) = -u ( M x. ( |_ ` ( N / M ) ) ) ) |
| 42 |
41
|
3ad2ant2 |
|- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( M x. -u ( |_ ` ( N / M ) ) ) = -u ( M x. ( |_ ` ( N / M ) ) ) ) |
| 43 |
42
|
oveq1d |
|- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( ( M x. -u ( |_ ` ( N / M ) ) ) .x. X ) = ( -u ( M x. ( |_ ` ( N / M ) ) ) .x. X ) ) |
| 44 |
18
|
3ad2ant2 |
|- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( N / M ) e. RR ) |
| 45 |
44
|
flcld |
|- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( |_ ` ( N / M ) ) e. ZZ ) |
| 46 |
45
|
znegcld |
|- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> -u ( |_ ` ( N / M ) ) e. ZZ ) |
| 47 |
1 3
|
mulgassr |
|- ( ( G e. Grp /\ ( -u ( |_ ` ( N / M ) ) e. ZZ /\ M e. ZZ /\ X e. B ) ) -> ( ( M x. -u ( |_ ` ( N / M ) ) ) .x. X ) = ( -u ( |_ ` ( N / M ) ) .x. ( M .x. X ) ) ) |
| 48 |
25 46 28 33 47
|
syl13anc |
|- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( ( M x. -u ( |_ ` ( N / M ) ) ) .x. X ) = ( -u ( |_ ` ( N / M ) ) .x. ( M .x. X ) ) ) |
| 49 |
|
oveq2 |
|- ( ( M .x. X ) = .0. -> ( -u ( |_ ` ( N / M ) ) .x. ( M .x. X ) ) = ( -u ( |_ ` ( N / M ) ) .x. .0. ) ) |
| 50 |
49
|
adantl |
|- ( ( X e. B /\ ( M .x. X ) = .0. ) -> ( -u ( |_ ` ( N / M ) ) .x. ( M .x. X ) ) = ( -u ( |_ ` ( N / M ) ) .x. .0. ) ) |
| 51 |
50
|
3ad2ant3 |
|- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( -u ( |_ ` ( N / M ) ) .x. ( M .x. X ) ) = ( -u ( |_ ` ( N / M ) ) .x. .0. ) ) |
| 52 |
1 3 2
|
mulgz |
|- ( ( G e. Grp /\ -u ( |_ ` ( N / M ) ) e. ZZ ) -> ( -u ( |_ ` ( N / M ) ) .x. .0. ) = .0. ) |
| 53 |
25 46 52
|
syl2anc |
|- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( -u ( |_ ` ( N / M ) ) .x. .0. ) = .0. ) |
| 54 |
48 51 53
|
3eqtrd |
|- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( ( M x. -u ( |_ ` ( N / M ) ) ) .x. X ) = .0. ) |
| 55 |
43 54
|
eqtr3d |
|- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( -u ( M x. ( |_ ` ( N / M ) ) ) .x. X ) = .0. ) |
| 56 |
55
|
oveq2d |
|- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( ( N .x. X ) ( +g ` G ) ( -u ( M x. ( |_ ` ( N / M ) ) ) .x. X ) ) = ( ( N .x. X ) ( +g ` G ) .0. ) ) |
| 57 |
|
id |
|- ( G e. Grp -> G e. Grp ) |
| 58 |
1 3
|
mulgcl |
|- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( N .x. X ) e. B ) |
| 59 |
57 26 32 58
|
syl3an |
|- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( N .x. X ) e. B ) |
| 60 |
1 34 2
|
grprid |
|- ( ( G e. Grp /\ ( N .x. X ) e. B ) -> ( ( N .x. X ) ( +g ` G ) .0. ) = ( N .x. X ) ) |
| 61 |
25 59 60
|
syl2anc |
|- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( ( N .x. X ) ( +g ` G ) .0. ) = ( N .x. X ) ) |
| 62 |
37 56 61
|
3eqtrd |
|- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( ( N mod M ) .x. X ) = ( N .x. X ) ) |