| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulgmodid.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | mulgmodid.o |  |-  .0. = ( 0g ` G ) | 
						
							| 3 |  | mulgmodid.t |  |-  .x. = ( .g ` G ) | 
						
							| 4 |  | zre |  |-  ( N e. ZZ -> N e. RR ) | 
						
							| 5 |  | nnrp |  |-  ( M e. NN -> M e. RR+ ) | 
						
							| 6 |  | modval |  |-  ( ( N e. RR /\ M e. RR+ ) -> ( N mod M ) = ( N - ( M x. ( |_ ` ( N / M ) ) ) ) ) | 
						
							| 7 | 4 5 6 | syl2an |  |-  ( ( N e. ZZ /\ M e. NN ) -> ( N mod M ) = ( N - ( M x. ( |_ ` ( N / M ) ) ) ) ) | 
						
							| 8 | 7 | 3ad2ant2 |  |-  ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( N mod M ) = ( N - ( M x. ( |_ ` ( N / M ) ) ) ) ) | 
						
							| 9 | 8 | oveq1d |  |-  ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( ( N mod M ) .x. X ) = ( ( N - ( M x. ( |_ ` ( N / M ) ) ) ) .x. X ) ) | 
						
							| 10 |  | zcn |  |-  ( N e. ZZ -> N e. CC ) | 
						
							| 11 | 10 | adantr |  |-  ( ( N e. ZZ /\ M e. NN ) -> N e. CC ) | 
						
							| 12 |  | nnz |  |-  ( M e. NN -> M e. ZZ ) | 
						
							| 13 | 12 | adantl |  |-  ( ( N e. ZZ /\ M e. NN ) -> M e. ZZ ) | 
						
							| 14 |  | nnre |  |-  ( M e. NN -> M e. RR ) | 
						
							| 15 |  | nnne0 |  |-  ( M e. NN -> M =/= 0 ) | 
						
							| 16 |  | redivcl |  |-  ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( N / M ) e. RR ) | 
						
							| 17 | 4 14 15 16 | syl3an |  |-  ( ( N e. ZZ /\ M e. NN /\ M e. NN ) -> ( N / M ) e. RR ) | 
						
							| 18 | 17 | 3anidm23 |  |-  ( ( N e. ZZ /\ M e. NN ) -> ( N / M ) e. RR ) | 
						
							| 19 | 18 | flcld |  |-  ( ( N e. ZZ /\ M e. NN ) -> ( |_ ` ( N / M ) ) e. ZZ ) | 
						
							| 20 | 13 19 | zmulcld |  |-  ( ( N e. ZZ /\ M e. NN ) -> ( M x. ( |_ ` ( N / M ) ) ) e. ZZ ) | 
						
							| 21 | 20 | zcnd |  |-  ( ( N e. ZZ /\ M e. NN ) -> ( M x. ( |_ ` ( N / M ) ) ) e. CC ) | 
						
							| 22 | 11 21 | negsubd |  |-  ( ( N e. ZZ /\ M e. NN ) -> ( N + -u ( M x. ( |_ ` ( N / M ) ) ) ) = ( N - ( M x. ( |_ ` ( N / M ) ) ) ) ) | 
						
							| 23 | 22 | 3ad2ant2 |  |-  ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( N + -u ( M x. ( |_ ` ( N / M ) ) ) ) = ( N - ( M x. ( |_ ` ( N / M ) ) ) ) ) | 
						
							| 24 | 23 | oveq1d |  |-  ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( ( N + -u ( M x. ( |_ ` ( N / M ) ) ) ) .x. X ) = ( ( N - ( M x. ( |_ ` ( N / M ) ) ) ) .x. X ) ) | 
						
							| 25 |  | simp1 |  |-  ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> G e. Grp ) | 
						
							| 26 |  | simpl |  |-  ( ( N e. ZZ /\ M e. NN ) -> N e. ZZ ) | 
						
							| 27 | 26 | 3ad2ant2 |  |-  ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> N e. ZZ ) | 
						
							| 28 | 13 | 3ad2ant2 |  |-  ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> M e. ZZ ) | 
						
							| 29 | 19 | 3ad2ant2 |  |-  ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( |_ ` ( N / M ) ) e. ZZ ) | 
						
							| 30 | 28 29 | zmulcld |  |-  ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( M x. ( |_ ` ( N / M ) ) ) e. ZZ ) | 
						
							| 31 | 30 | znegcld |  |-  ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> -u ( M x. ( |_ ` ( N / M ) ) ) e. ZZ ) | 
						
							| 32 |  | simpl |  |-  ( ( X e. B /\ ( M .x. X ) = .0. ) -> X e. B ) | 
						
							| 33 | 32 | 3ad2ant3 |  |-  ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> X e. B ) | 
						
							| 34 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 35 | 1 3 34 | mulgdir |  |-  ( ( G e. Grp /\ ( N e. ZZ /\ -u ( M x. ( |_ ` ( N / M ) ) ) e. ZZ /\ X e. B ) ) -> ( ( N + -u ( M x. ( |_ ` ( N / M ) ) ) ) .x. X ) = ( ( N .x. X ) ( +g ` G ) ( -u ( M x. ( |_ ` ( N / M ) ) ) .x. X ) ) ) | 
						
							| 36 | 25 27 31 33 35 | syl13anc |  |-  ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( ( N + -u ( M x. ( |_ ` ( N / M ) ) ) ) .x. X ) = ( ( N .x. X ) ( +g ` G ) ( -u ( M x. ( |_ ` ( N / M ) ) ) .x. X ) ) ) | 
						
							| 37 | 9 24 36 | 3eqtr2d |  |-  ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( ( N mod M ) .x. X ) = ( ( N .x. X ) ( +g ` G ) ( -u ( M x. ( |_ ` ( N / M ) ) ) .x. X ) ) ) | 
						
							| 38 |  | nncn |  |-  ( M e. NN -> M e. CC ) | 
						
							| 39 | 38 | adantl |  |-  ( ( N e. ZZ /\ M e. NN ) -> M e. CC ) | 
						
							| 40 | 19 | zcnd |  |-  ( ( N e. ZZ /\ M e. NN ) -> ( |_ ` ( N / M ) ) e. CC ) | 
						
							| 41 | 39 40 | mulneg2d |  |-  ( ( N e. ZZ /\ M e. NN ) -> ( M x. -u ( |_ ` ( N / M ) ) ) = -u ( M x. ( |_ ` ( N / M ) ) ) ) | 
						
							| 42 | 41 | 3ad2ant2 |  |-  ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( M x. -u ( |_ ` ( N / M ) ) ) = -u ( M x. ( |_ ` ( N / M ) ) ) ) | 
						
							| 43 | 42 | oveq1d |  |-  ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( ( M x. -u ( |_ ` ( N / M ) ) ) .x. X ) = ( -u ( M x. ( |_ ` ( N / M ) ) ) .x. X ) ) | 
						
							| 44 | 18 | 3ad2ant2 |  |-  ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( N / M ) e. RR ) | 
						
							| 45 | 44 | flcld |  |-  ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( |_ ` ( N / M ) ) e. ZZ ) | 
						
							| 46 | 45 | znegcld |  |-  ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> -u ( |_ ` ( N / M ) ) e. ZZ ) | 
						
							| 47 | 1 3 | mulgassr |  |-  ( ( G e. Grp /\ ( -u ( |_ ` ( N / M ) ) e. ZZ /\ M e. ZZ /\ X e. B ) ) -> ( ( M x. -u ( |_ ` ( N / M ) ) ) .x. X ) = ( -u ( |_ ` ( N / M ) ) .x. ( M .x. X ) ) ) | 
						
							| 48 | 25 46 28 33 47 | syl13anc |  |-  ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( ( M x. -u ( |_ ` ( N / M ) ) ) .x. X ) = ( -u ( |_ ` ( N / M ) ) .x. ( M .x. X ) ) ) | 
						
							| 49 |  | oveq2 |  |-  ( ( M .x. X ) = .0. -> ( -u ( |_ ` ( N / M ) ) .x. ( M .x. X ) ) = ( -u ( |_ ` ( N / M ) ) .x. .0. ) ) | 
						
							| 50 | 49 | adantl |  |-  ( ( X e. B /\ ( M .x. X ) = .0. ) -> ( -u ( |_ ` ( N / M ) ) .x. ( M .x. X ) ) = ( -u ( |_ ` ( N / M ) ) .x. .0. ) ) | 
						
							| 51 | 50 | 3ad2ant3 |  |-  ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( -u ( |_ ` ( N / M ) ) .x. ( M .x. X ) ) = ( -u ( |_ ` ( N / M ) ) .x. .0. ) ) | 
						
							| 52 | 1 3 2 | mulgz |  |-  ( ( G e. Grp /\ -u ( |_ ` ( N / M ) ) e. ZZ ) -> ( -u ( |_ ` ( N / M ) ) .x. .0. ) = .0. ) | 
						
							| 53 | 25 46 52 | syl2anc |  |-  ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( -u ( |_ ` ( N / M ) ) .x. .0. ) = .0. ) | 
						
							| 54 | 48 51 53 | 3eqtrd |  |-  ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( ( M x. -u ( |_ ` ( N / M ) ) ) .x. X ) = .0. ) | 
						
							| 55 | 43 54 | eqtr3d |  |-  ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( -u ( M x. ( |_ ` ( N / M ) ) ) .x. X ) = .0. ) | 
						
							| 56 | 55 | oveq2d |  |-  ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( ( N .x. X ) ( +g ` G ) ( -u ( M x. ( |_ ` ( N / M ) ) ) .x. X ) ) = ( ( N .x. X ) ( +g ` G ) .0. ) ) | 
						
							| 57 |  | id |  |-  ( G e. Grp -> G e. Grp ) | 
						
							| 58 | 1 3 | mulgcl |  |-  ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( N .x. X ) e. B ) | 
						
							| 59 | 57 26 32 58 | syl3an |  |-  ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( N .x. X ) e. B ) | 
						
							| 60 | 1 34 2 | grprid |  |-  ( ( G e. Grp /\ ( N .x. X ) e. B ) -> ( ( N .x. X ) ( +g ` G ) .0. ) = ( N .x. X ) ) | 
						
							| 61 | 25 59 60 | syl2anc |  |-  ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( ( N .x. X ) ( +g ` G ) .0. ) = ( N .x. X ) ) | 
						
							| 62 | 37 56 61 | 3eqtrd |  |-  ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( ( N mod M ) .x. X ) = ( N .x. X ) ) |