| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulgnncl.b |
|- B = ( Base ` G ) |
| 2 |
|
mulgnncl.t |
|- .x. = ( .g ` G ) |
| 3 |
|
mulgneg.i |
|- I = ( invg ` G ) |
| 4 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
| 5 |
|
simpr |
|- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ N e. NN ) -> N e. NN ) |
| 6 |
|
simpl3 |
|- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ N e. NN ) -> X e. B ) |
| 7 |
1 2 3
|
mulgnegnn |
|- ( ( N e. NN /\ X e. B ) -> ( -u N .x. X ) = ( I ` ( N .x. X ) ) ) |
| 8 |
5 6 7
|
syl2anc |
|- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ N e. NN ) -> ( -u N .x. X ) = ( I ` ( N .x. X ) ) ) |
| 9 |
|
simpl1 |
|- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ N = 0 ) -> G e. Grp ) |
| 10 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 11 |
10 3
|
grpinvid |
|- ( G e. Grp -> ( I ` ( 0g ` G ) ) = ( 0g ` G ) ) |
| 12 |
9 11
|
syl |
|- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ N = 0 ) -> ( I ` ( 0g ` G ) ) = ( 0g ` G ) ) |
| 13 |
|
simpr |
|- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ N = 0 ) -> N = 0 ) |
| 14 |
13
|
oveq1d |
|- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ N = 0 ) -> ( N .x. X ) = ( 0 .x. X ) ) |
| 15 |
|
simpl3 |
|- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ N = 0 ) -> X e. B ) |
| 16 |
1 10 2
|
mulg0 |
|- ( X e. B -> ( 0 .x. X ) = ( 0g ` G ) ) |
| 17 |
15 16
|
syl |
|- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ N = 0 ) -> ( 0 .x. X ) = ( 0g ` G ) ) |
| 18 |
14 17
|
eqtrd |
|- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ N = 0 ) -> ( N .x. X ) = ( 0g ` G ) ) |
| 19 |
18
|
fveq2d |
|- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ N = 0 ) -> ( I ` ( N .x. X ) ) = ( I ` ( 0g ` G ) ) ) |
| 20 |
13
|
negeqd |
|- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ N = 0 ) -> -u N = -u 0 ) |
| 21 |
|
neg0 |
|- -u 0 = 0 |
| 22 |
20 21
|
eqtrdi |
|- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ N = 0 ) -> -u N = 0 ) |
| 23 |
22
|
oveq1d |
|- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ N = 0 ) -> ( -u N .x. X ) = ( 0 .x. X ) ) |
| 24 |
23 17
|
eqtrd |
|- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ N = 0 ) -> ( -u N .x. X ) = ( 0g ` G ) ) |
| 25 |
12 19 24
|
3eqtr4rd |
|- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ N = 0 ) -> ( -u N .x. X ) = ( I ` ( N .x. X ) ) ) |
| 26 |
8 25
|
jaodan |
|- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ ( N e. NN \/ N = 0 ) ) -> ( -u N .x. X ) = ( I ` ( N .x. X ) ) ) |
| 27 |
4 26
|
sylan2b |
|- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ N e. NN0 ) -> ( -u N .x. X ) = ( I ` ( N .x. X ) ) ) |
| 28 |
|
simpl1 |
|- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> G e. Grp ) |
| 29 |
|
simprr |
|- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u N e. NN ) |
| 30 |
29
|
nnzd |
|- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u N e. ZZ ) |
| 31 |
|
simpl3 |
|- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> X e. B ) |
| 32 |
1 2
|
mulgcl |
|- ( ( G e. Grp /\ -u N e. ZZ /\ X e. B ) -> ( -u N .x. X ) e. B ) |
| 33 |
28 30 31 32
|
syl3anc |
|- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( -u N .x. X ) e. B ) |
| 34 |
1 3
|
grpinvinv |
|- ( ( G e. Grp /\ ( -u N .x. X ) e. B ) -> ( I ` ( I ` ( -u N .x. X ) ) ) = ( -u N .x. X ) ) |
| 35 |
28 33 34
|
syl2anc |
|- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( I ` ( I ` ( -u N .x. X ) ) ) = ( -u N .x. X ) ) |
| 36 |
1 2 3
|
mulgnegnn |
|- ( ( -u N e. NN /\ X e. B ) -> ( -u -u N .x. X ) = ( I ` ( -u N .x. X ) ) ) |
| 37 |
29 31 36
|
syl2anc |
|- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( -u -u N .x. X ) = ( I ` ( -u N .x. X ) ) ) |
| 38 |
|
simprl |
|- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> N e. RR ) |
| 39 |
38
|
recnd |
|- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> N e. CC ) |
| 40 |
39
|
negnegd |
|- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u -u N = N ) |
| 41 |
40
|
oveq1d |
|- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( -u -u N .x. X ) = ( N .x. X ) ) |
| 42 |
37 41
|
eqtr3d |
|- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( I ` ( -u N .x. X ) ) = ( N .x. X ) ) |
| 43 |
42
|
fveq2d |
|- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( I ` ( I ` ( -u N .x. X ) ) ) = ( I ` ( N .x. X ) ) ) |
| 44 |
35 43
|
eqtr3d |
|- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( -u N .x. X ) = ( I ` ( N .x. X ) ) ) |
| 45 |
|
simp2 |
|- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> N e. ZZ ) |
| 46 |
|
elznn0nn |
|- ( N e. ZZ <-> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) |
| 47 |
45 46
|
sylib |
|- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) |
| 48 |
27 44 47
|
mpjaodan |
|- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( -u N .x. X ) = ( I ` ( N .x. X ) ) ) |